
– Independent Work Report Spring 2025 –

Conditional Diffusion for Specific Cellular Automata Synthesis
in Conway’s Game of Life

Jin Schofield
Adviser: Vikram Ramaswamy

Abstract

Generative machine learning can often fail to properly model discrete patterns in logic-based

environments. In this work, I present a conditional diffusion framework that makes use of DDPM,

classifier-free guidance, and FiLM-based class embeddings. The model is trained on both random

and quota-balanced datasets of Conway’s Game of Life to ensure representation of rare patterns.

Conditional sampling increased the occurrence of targeted life form patterns when compared to

unconditional sampling. Motif analysis and t-SNE visualization showcase the frequency of varyingly

complex cellular automata as well as the separability of noising embeddings for different forms of

life. The findings of this project demonstrate that conditional diffusion can distill and increase the

occurrence of fine-grained discrete structures in logic-based environments, furthering the field of

applying interpretable generative modeling to discrete data. Diffusion models are better at learning

simpler structures as opposed to complex structures, and are capable of learning combinations of

these structures.

1. Introduction

1.1. Motivation and Goals

Diffusion models are a form of generative machine learning that is especially popular for two-

dimensional image generation. By training on a series of images in a dataset, they learn the

capability to remove noise from pure Gaussian noise to create images that appear as if they could

have been sampled from the original dataset. Compared to other image generation techniques,

such as those using generative adversarial networks (GANs) and variational autoencoders (VAEs),



diffusion models demonstrate better quality and training stability (Goodfellow, Kingma). However,

hallucinations, or logical errors, are often generated in diffusion generations, such as biologically

impossible depictions of humans. Diffusion models perform well on continuous image generation

tasks, but can perform more poorly when robustly creating images in discrete or logically structured

settings.

In particular, diffusion models struggle to identify discrete patterns in data and robustly apply them

during image generation (Austin et al.). Diffusion processes, which are ideal for training on datasets

of continuous domains, can fail to respect logical, combinatorial rules found in environments such as

Conway’s Game of Life. If applied naively, diffusion models are more likely to represent outcomes

of higher probability in the dataset, such as extinction of a pixel configuration. This leads to the

underrepresentation of more rare, delicate structures such as forms of life that persist throughout the

game. This is due to how, in Conway’s Game of Life, every pixel has the potential to impact other

pixels in a sort of butterfly-like effect. Thus, in order to correctly model these forms of life, the

diffusion model must be precise with its generations in a discrete setting, learning patterns to adhere

to the environment’s logical rules. A small mistake in the form of a single pixel has the potential to

change the label of an entire sample generation.

In essence, this paper seeks to utilize diffusion to create conditional embeddings that represent

logical patterns. In NLP and computer vision, embeddings are numerical representations of tokens

that represent abstract ideas, such as the visual manifestation of a "car", or the syntactic and semantic

manifestations of "car". When these embeddings are created conditioned on specific subset of

data, they can be referred to as conditional embeddings. The paper trains conditional embeddings

in diffusion such that, in order to represent a notion such as a "still-life" living configuration in

Conway’s Game of Life, they must partially emulate the logical pattern of a still-life as well. This

attempt to distill logical patterns in embeddings aims to reduce hallucinations caused by logical

errors in computer vision, as well as increase interpretability.

Specifically, this work aims to develop a conditional diffusion framework for discrete pattern

synthesis in cellular automata.

2



1.2. Contributions

The contribution of this paper to the fields of interpretability and computer vision are the creation

of a pipeline that created embeddings that represent logic-based fine-grained patterns in a discrete

setting, and a diffusion model that can synthesize specific cellular automata in the Conway’s Game

of Life environment. In particular, the diffusion model will be able to generate still-life and 2-period

oscillator forms of life, as well as cellular automata that die off.

In using datasets of only 4000 samples, each of only a 32 by 32 resolution, this technique does

not require a large dataset and thus contributes to dataset efficiency as well.

2. Background and Related Work

2.1. Cellular Automata and Conway’s Game of Life

Cellular automata are dynamical systems that operate in discrete environments, particularly a grid

of cells, where each cell can take a value from a finite set. Each cell updates according to local

transition rules and all cells update at the same time (Wolfram). One set-up for cellular automata

is Conway’s Game of Life (GoL) (Gardner). In GoL, there exists a two-dimensional grid where

each cell in the grid can either be dead or alive. For the purposes of this paper, white indicates

dead and black indicates alive. Each cell has eight neighbors. If a live cell has two or three live

neighbors, it survives. Otherwise, it dies. if a dead cell has exactly three live neighbors, it becomes

a live cell. There are many emergent behaviors that occur in GoL. For example, there are various

still-life patterns, such as blocks and beehives. These patterns include live cells which always have

exactly two or three live neighbors, and dead cells without exactly three live neighbors. Thus, no

cells change with each timestep. Period-k oscillators are patterns that repeat every k timesteps, such

as blinkers and toads. There are also configurations that move such as gliders and spaceships. In

this paper, I will focus on identifying conditional embeddings for still-life and period-2 oscillators.

3



2.2. Generative Machine Learning and Applications to Discrete Data

Generative machine learning is a form of machine learning that specializes in training models that

can generate data that resembles that of a training dataset. Existing techniques are accurate and

efficient when dealing with continuous data. One example is the generative adversarial network

(GAN), which makes use of competing "generator" and "discriminator" models to produce images

that resemble a dataset, although the technique suffers from training instability and mode collapse

(Goodfellow, Arjovsky). A second technique is the variational autoencoder (VAE) that learns

to encode and decode a latent representation of important features of a dataset, and then sample

from it using randomization. This technique can suffer from being imprecise in its generations

(Kingma). A technique that has been particularly accurate is the denoising diffusion probabilistic

model (DDPMs). This technique consists of adding Gaussian noise to data over several time steps

and then using a neural network to learn how to denoise an example of pure noise over various

timesteps to reverse the noising process and reveal an image similar to the dataset (Ho, Dhariwal).

Diffusion models are known for their stable training dynamics and ability to create high fidelity

images.

These models leverage decoders that are differentiable, meaning a small change in the output

can result from a small change in the input, as well as transformations done by these decoders

that are invertible (there is a bijective mapping between input and output). In discrete settings,

small changes in the input result in either no change to the output or very large changes to output.

Thus, transformations are not bijective. Thus, the previously mentioned generative AI techniques

can struggle to learn discrete data. The Gumbel-Softmax reparameterization technique aims to

approximate discrete sampling by using continuous relaxations but suffers the pitfalls of poor sample

quality and bias (Jang). There exist graph-based generative models that use "message-passing"

networks in order to create discrete graphs (You, Liu), although these graph structures create

associations between different tokenized embeddings rather than representing discrete logical rules.

4



2.3. Diffusion

As discussed earlier, diffusion models use a forward noising process q(xt |xt−1)=N (xt ;
√

1−βtxt−1,βtI)

to convert samples of a dataset into noise. The technique then trains a network εθ (xt , t) (Sohl, Ho)

to denoise samples of pure noise into samples reminiscent of the original dataset. A key component

of the diffusion model is the noise schedule {βt}T
t=1, or the plan for how much noise is added at

each timestep. If the noise schedule is linear, per-step noise is added by interpolating βt . A cosine

noise schedule instead aims to gradually increase cumulative noise ᾱt in a smooth manner, which

can increase fidelity of the outputs (Nichol). Diffusion models can be made conditional by injecting

new information, trained exclusively on certain subsets of the data, into the denoising, such that for

certain conditions (i.e. a specific pattern in Conway’s Game of Life), specific information faithful to

that condition is added. The denoiser takes the form of a U-Net. At each time step, the U-Net takes

the current noisy grid, the time step embedding, and any conditional embeddings (to be explained

in the next paragraph), and predicts the noise residual, which is then removed from the image.

2.4. Conditional Diffusion and FiLM Layers

Conditional generative modelling can use one of two techniques — classifier guidance and classifier-

free techniques. Classifier guidance trains a classifier pφ (c|xt) on the conditions but this causes

inference costs to be doubled. Thus, my technique uses classifier-free guidance which randomly

adds condition embeddings during training with probability pdrop at each timestep. At these

timesteps, conditional and unconditional noise predictions are calculated during sampling using

ε̂ = (1+w)εθ (xt , t,c)−wεθ (xt , t,) (Ho). My paper uses feature-wise linear modulation (FiLM)

which integrates the condition embeddings by learning affine transformations on the intermediate

outputs of the layer, which enables precise control over the generations (Perez, Liu).

2.5. Previous Work in Synthesis of Cellular Automata

A significant past approach to automating the discovery of different configurations of cellular

automata is the use of genetic algorithms. The use of genetic evolutionary algorithms have been

5



able to evolve initial conditions and even other rule sets that foster various objectives, such as length

of life or complexity (Mitchell). Genetic algorithms simulate evolution by evolving a "genetic code"

in an environment by using mutation, cross-over, and selection.

In the past, convolutional neural networks have been successful at learning a GoL’s dynamics

from observation, including on random cellular automata, where probability is used to randomize

part of the dynamics (Gilpin). Additionally, neural networks have been used to train rules of cellular

automata that allow for a desired configuration to exist. (Mordvintsev). However, these works tackle

the ability to model cellular automata or create rule sets. The ability to condition for specific types

of cellular automata, and thus to distill down logical relationships of specific behaviors within a rule

set in a way that is generalizeable, has not been explored.

2.6. Embedding Visualization and Interpretability

Embeddings and conditional embeddings were introduced earlier in my introduction.

Overall, cellular automata and continuous generative modelling works have largely evolved

independently. This work aims to connect the two lines of research and integrate generative

modelling for this purely discrete environment. The use of diffusion instead of convolutional neural

networks in my project allows for the distillation of conditional embeddings that represent and can

thus generate specific types of life. A benefit of using diffusion is that it is inherently generative and

thus has the potential to utilize conditional embeddings to generate new unseen patterns as well. We

keep track of a novelty rate in this project to ensure generations are not clones or rotated or reflected

versions of clones of training data,

3. Approach

3.1. Key Novel Idea: Why It Is New and Why It is Effective

The key novel idea of this paper is the framing of Conway’s Game of Life cellular automata

generation as a conditional diffusion problem. In particular, the novel idea is to leverage the

precision of conditional diffusion to capture the patterns and logical backbone of certain froms

6



of GoL cellular life in conditional embeddings. While previous attempts at understanding GoL

have been either non-generative (such as with physics-based dynamics papers as well as the work

exploring convolutional neural networks to understand the rules) or did not attempt to specify

the differences between various GoL life forms, this work uses conditional diffusion to not only

generate new GoL life forms but create conditional embeddings that can separate between them

(Tapia-McClung & Hernandez-Montoya, Gilpin). This seeks to understand latent representations of

structures that survive in the GoL environment rather than purely simulating pre-created patterns or

analyzing existing dynamics.

This idea is effective because it leverages the fine-grained conditional control that well-trained

conditional diffusion models are able to exhibit. Conditional diffusion not only learns how to

differentiate between life forms based on classification, but also how to generate different types of

noises at different time steps, thus allowing for finer control at the pixel level in generations, which

is crucial for a discrete, logic-based environment such as GoL.

3.2. Overarching Explanation

The overarching goal is, in an environment operating under logical rules, to distill discrete cellular

automata patterns using conditional diffusion generation. Each GoL board is represented as a 32 by

32 grid of binary cells, with white coloring representing a dead cell and black coloring representing

an alive cell. The binary grid can thus be represented as x0 ∈ {0,1}32×32. For example, each training

dataset sample takes that form.

The forward diffusion process adds Gaussian noise to x0 over 200 timesteps. This produces a

noisier version of x0 which we will call xt at timestep t. The U-Net, augmented with FiLM layers,

learns to predict ε , the noise, at every timestep. These components are used at each time step to

denoise during the reverse process.

There is two types of class conditioning originating in the training datasets by applying class

labels to each sample in the dataset, which are then passed into the diffusion model when learning.

The model reserves particular layers to learning only when a particular condition is present, thus

7



constructing information to be given to the FiLM layer during the denoising reverse process. One

condition explains whether after 200 logical timesteps of the Game of Life, the training sample

configuration has at least one living cell left (alive), or all cells are dead (dead). The second

condition has four options: dead, still-life, 2-period oscillator, and other form of life. This second

condition simply conditions more granularly for a specific type of life. Classifying live samples

between still-life, 2-period oscillator, and other occurs by looking at the final frames of the 200

timesteps. If they do not change, it is a still-life. If there is repetition of period 2, it is an oscillator

of period 2. Otherwise, it is labelled other.

The one other form of conditioning is timestep conditioning, which takes the form of a sinusoidal

positional encoding, meaning it is generated by computing a series of sine and cosine functions at

varying frequencies. In particular, the vector takes the form,

n(w1t),cos(w1t),sin(w2t),cos(w2t), . . . ,sin(wKt),cos(wKt)

where each wk is a different frequency. This technique is used to create a more smooth difference

between vectors at each time step, which allows for more stable training.

The timestep and class embeddings are summed together to form vector et,c. During inference,

the classifier-guidance thus interpolates between the unconditional and conditional predictions

by adjusting wk. This allows for a balance between diversity of sampling and adherence to the

condition.

3.3. Datasets

We create two different datasets.

The first dataset is the random dataset, meaning that 4000 GoL samples are generated randomly.

They are generated by each cell having an independent probability of being alive of 0.05 in a 32 by

32 grid. Each board is then evolved for 200 steps using GoL rules. The outcome is then classified

based on the two conditions of whether it is alive or dead, and its specific type of life. A script

calculating neighbor counts for each cell is used to simulate the GoL rules. The purpose of this

dataset being random is to collect the naturally occurring proportions of dead samples, alive samples,

8



Figure 1: Components of Network

and various types of life. This dataset is created by generate_random_dataset.py

The second dataset generates and classified data samples in the same way, except that it has quotas:

1000 dead samples (meaning samples that die at the 200th timestep), 1000 still-life alive samples,

1000 2-period oscillator alive samples, and 1000 other alive samples. This dataset generates until all

4 quotas are full and does not add more than 1000 of each type of sample.

4. Implementation

4.1. Diffusion Model Architecture

The model architecture consists of a standard U-Net backbone with residual FiLM blocks for class

embeddings. The components of the network can be seen in Figure 1 and are elaborated upon in the

following table:

9



4.2. Components of Network: Descriptions

Component Description

Time

Embedding

A sinusoidal position encoder passed through an multi-layer perceptron. It has 256

dimensions, is expanded to 1024 in the perceptron, and then outputs as 256 dimensions.

It has SiLU activation.

Class

Embedding

It is a table of learnable embeddings for all forms of life, alive, and death classes. Each

have 256 dimensions.

Downsampling

Path

There are three residual blocks with channel depths 64, 128, and 256. Each consists of

GroupNorm, FiLM (parameterized by the et,c vector), SiLU, and a 3 by 3 convolution.

After this convolution, a time embedding is added. There is a 4 by 4 stride-2 convolution

to halve resolution.

Bottleneck A residual FiLM block at 256 channels.

Upsampling

Path

This consists of three stages of convolutions and their transposes used to up-sample. It

utilized skip-connection concatenation from the downsampling path. A skip is the feature

tensor saved from the downsampling path during encoding and then given to the decoding

upsampling path. There are three FiLM residual blocks at channels 256, 128, and 64.

Output Head This consists of a FiLM residual block at 64 channels. It has a 1 by 1 convolution that

creates a single-channel noise prediction ε̂(xt , t,c)
The weights are initilalized using Kaiming normalization and I apply spectral regularization to

promote stable training.

4.3. Training Procedure

Training occurs over 250 epochs. One model trains on the random dataset, and the other trains on

the dataset of quotas, producing two different models. We will call them the random model and

then quota model.

We use the AdamW optimizer with a learning rate 10−4. The batch size is 32.

For every batch, the following steps repeat:

10



1. Sample t ∼ Uniform(1,T ).

2. Calculate xt =
√

ᾱtx0 +
√

1− ᾱtε using ε ∼N (0, I).

3. Send xt , t, and condition c through the U-Net and predict ε̂ .

4. Calculate mean squared-error loss, LMSE = ∥ε− ε̂∥2.

5. Backpropagate.

6. Clip gradient at norm 1.0.

7. Update optimizer.

4.4. Sampling and Inference

Depending on the experiment, either 300 or 500 boards are sampled at a time. This means 500 32

by 32 boards are initialized using a threshold probability (for example, 0.5) that each cell is alive at

the first timestep. They are each evaluated after 200 timesteps using the rules of GoL before being

classified as alive or dead and by type of life. We sample random noise with xT ∼N (0, I) and

iterate the reverse process with classifier-free guidance parameter w = 1.0.

4.5. Reproducibility and Environment Setup

4.5.1 Code and Data Repository

All code, data, and other information exist on GitHub:

https://github.com/jinschofield/Gen-GOL

The root of the repository possesses:

• README.md: overview, installation, usage.

• requirements.txt: pinned Python dependencies.

• train.py, phase_2_conditional_diffusion/, finished_models/, data/, scripts/.

I designed the codebase to compartmentalize responsibilities and thus allow for easy maintenance.

Upon opening the root of the repository:

• phase_2_conditional_diffusion/: This generates datasets.

11

https://github.com/jinschofield/Gen-GOL


• models/: This possesses definitions of the architecture in unet.py. Logic for diffusion is in

diffusion.py.

• scripts/: This possesses the code for evaluation as well as the generation of information used

in this paper’s figures.

• train.py: This file performs training and possesses functions that help with sampling.

• requirements.txt: This contains dependency specifications.

• notebooks/: This contains the notebook used to interface with the rest of the code base for data

generation, training, evaluation, and visualization.

• plot_fig8_embedding_similarity.py: This plots the cosine similarity matrix.

• plot_fig2.py: This is used for figures 2 and 4.

• plot_living_normalized.py: This is used for figures 3 and 5.

• plot_same_category_multi.py: This is used to create the conditional versus unconditional

comparison figures.

• plot_sample_visuals.py: This is used to print visual examples of each type of life.

• plot_tsne_film_embeds.py: This is used for t-SNE visualizations.

4.5.2 Environment Setup

Running the cells in the notebook will set up relevant dependencies and clone the repository. A

GitHub personal access token and GitHub username will have to be entered into the notebook.

4.6. Dataset Generation

The two files responsible for dataset generation are generate_random_dataset.py and

generate_quota_dataset.py. They use argparse in Python to accept parameters such as

output directories, sample counts, threshold (or probability for each individual cell to be alive or

dead during initialization), and quotas.

Each script does the following:

1. Initializes random seeds for NumPy and PyTorch.

2. Constructs the output directory if it is absent.

12



3. Samples 32 by 32 binary arrays with numpy.random.binomial.

4. Imports utils.gol_simulator in order to simulate a time step in the game. For example,

computing neighbor counts and making the respective change to the cell’s live status.

5. Classifies outcomes using the classify function in label_training_data_32x32.py.

6. Calls np.save() to save each board. 7. Writes rows to a CSV using csv.writer

4.7. Labeling Module

The file label_training_data_32x32.py simulates GoL for 200 time steps and then classifies

the outcome:

• Simulation using utils/gol_simulator.simulate(): This pads a 32×32 board. For each

timestep, neighbor sums are calculated using np.roll assuming a toroidal structure (the ends

wrap):

• Classification using classify_grid(arr, timesteps): Thus runs simulate(), then

1. If the final frame has all dead cells, it returns "died_out".

2. Otherwise, it searches backward in history for a match p steps back:

– p = 1: "still_life"

– p = 2: "oscillator_period_2"

– none: "others"

• CSV output: This uses Python’s built-in csv.writer to write to a CSV.

While I attempted to also classify for larger periods, gliders, and spaceships, I decided to only

classify period-2 oscillators and still-life for a few reasons. Firstly, I did not classify space ships

because upon manual scanning, my generated datasets seemed to almost never create them. Gliders

were more common but I could not find a computationally efficient way to accurately find them all

without false negatives or false positives. Finally, checking for oscillators of over period 2 was not

common because they did not naturally occur often.

The choice of making the edges toroidal was made in order to avoid having to make special rules

for edges and corners. There is no definite set of rules for Conway’s Game of Life for cells without

13



eight neighbors, thus I used the convention of making the grid toroidal. This meant that edges and

corners would wrap to the opposite side of the grid.

4.8. Model Code

In models/unet.py, the UNet class does the following:

• Creates the SinusoidalPosEmb module, which calculates time embeddings via sine/cosine

functions.

• It builds a multi-layer perceptron to project the embedding: SinusoidalPosEmb → Linear →

SiLU → Linear

• It instantiates nn.Embedding(num_classes, time_emb_dim) for class labels, which is summed

with the time embedding during conditioning.

• It defines the ResidualBlock class, which:

– Applies GroupNorm to the input x.

– Calculates FiLM parameters γ1,β1 using a linear layer on the time embedding t, then applies:

h← h ·
(
1+ γ1

)
+β1.

– Activates with SiLU: h← SiLU(h).

– Applies a 3×3 Conv2d: h← Conv2d(h).

– Adds the time-MLP skip connection: h← h+MLP(t).

– Applies GroupNorm to h.

– Calculates the FiLM parameters γ2,β2 from t and applies:

h← h ·
(
1+ γ2

)
+β2.

– Activates with SiLU again.

– Applies a 3×3 Conv2d.

– Adds the residual connection: output x+h.

14



• It defines UNet.__init__, which builds the following:

– self.downs: This is meant for down-sampling and is a structure of alternating ResidualBlock

→ Conv2d(stride=2) that halves the spatial dimensions

– self.bottleneck: This consists of one ResidualBlock at the lowest resolution.

– self.ups: This is meant for upsampling and is a structure consisting of ConvTranspose2d(stride=2)

→ ResidualBlock with skip-connection concatenation.

• The forward(x, t, c) method:

1. Calculates t_emb = time_MLP(SinusoidalPosEmb(t)).

2. If c is provided, adds class_emb(c) for use of the class embedding.

3. Runs the down-sampling path and stores skip maps.

4. Applies the bottleneck.

5. Runs the up-sampling path, concatenating each skip.

6. Applies a final ResidualBlock and a 1×1 Conv2d to output the noise prediction.

The use of SinusoidalPosEmb allows for more stable training due to the embeddings being

smoothly changed across timesteps, rather than having large abrupt changes.

4.9. Diffusion Engine

In models/diffusion.py, the Diffusion class is defined. The class contains the forward

and reverse processes:

– Initialization (__init__) This precalculates {βt}, {αt}, and {ᾱt} for either a linear or cosine

noise schedule.

– cosine_beta_schedule(timesteps, device, s=0.008) This implements the Nichol

Dhariwal cosine schedule for ᾱt and returns the per-step βt .

– q_sample(x_start, t, noise) This calculates the forward diffusion:

xt =
√

ᾱt x0 +
√

1− ᾱt ε, ε∼N (0, I).

– p_losses(model, x_start, t, c=None) This samples noise and computes MSE on

15



the predicted noise. There is code for implementations of MAE, SSIM, and BCE loss, but

the weights for these are defaulted to zero.:

– p_sample(model, x, t, c=None) This performs one reverse step using classifier-free

guidance.

– ddim_sample(model, shape, eta=0.0, c=None) This is a deterministic DDIM sam-

pler (η = 0), similar to p_sample but not incorporating stochastic noise.

– sample(model, shape, c=None) This causes the full reverse chain to run from t = T

down to 1 by calling p_sample at each step.

4.10. Notebook

The notebook organizes set-up such as cloning of the GitHub repository and downloading of

dependencies. It proceeds to then generate the relevant datasets, train the two models using

these datasets, and generate the data shown in the evaluation section.

4.11. Hyperparameter Ablation

Although a fully controlled grid search was not possible due to compute constraints, ablation

studies were performed to assess the best hyperparameters.

Techniques that were tested but ultimately not used included using a multiplier on the loss for

"live" cells to reinforce live cell occurrence, SSIM (Structural Similarity Index) loss, EMA

decay (Exponential moving average), BCE (binary cross-entropy) weight, loss-ramping with

SSIM and BCE, classifier-free guidance dropout, a pixel-wise L1 mean absolute error loss

term, and L2 weight decay.

16



Hyperparameters that were used are the following:

Hyperparameter Tuned Value

Noise Schedule Cosine

Epoch Number 250

Gradient Clipping The cap was at 1.0.

The use of FiLM layers. N/A

Learning Rate Scheduler Cosine

Classifier-free Guidance Drop-out. 0.1
The new, unintroduced concepts above are the learning rate scheduler and classifier-free

guidance dropout. The learning rate scheduler being cosine means that the learning rate follows

a half-cosine decay over the epochs and ends at nearly zero. This stabilizes convergence.

Classifier-free guidance dropout at 0.1 means that during training, the conditioning signal

is dropped 10 percent of the time, causing the model to learn conditional and unconditional

sampling modes. This trains the value εuncond in εguided = εuncond +w∗ (εcond˘εuncond), which

allows the guidance scale value w to be useful during inference.

4.12. Previous Approaches

Prior to attempting to use this standard conditional DDPM approach, I aimed to understand

Conway’s Game of Life using Diffusion-of-Thoughts, a framework that can apply diffusion to

strings of text, or in this case, notation representing a grid of cells. The aim of this task was

still to create abstract representations that could represent logical relationships. The particular

task was to predict the grid at the next time step given a grid at a previous time step. Ultimately,

my test accuracies were very low due to the inability for the Diffusion-of-Thoughts model

to perfectly understand the logical rule as I trained it. I am unsure whether this was because

the model is incapable of distilling down the logical rules from unsupervised datasets of text

descriptions of rules and sample evolutions as well as supervised datasets, or whether it was

an error of my not giving enough information to the model. I decided to find a different way

to try to distill down logical relationships in embeddings in a manner that would be able to

17



track incremental, imperfect progress. Thus, I stopped using a model that also possessed text

embeddings and only focused on diffusion on binary data and evaluating on a metric that was

more interpretable, outcomes of generativity.

5. Evaluation

5.1. Metrics

There does not exist a standardized benchmark against which I can compare the success of

my conditional embeddings at conditioning for specific traits in GoL cellular automata. The

evaluation section will be separated into two parts: quantitative and qualitative. Firstly, I

will demonstrate the efficacy of trained conditional embeddings quantitatively by showing

how they increase the occurrence of their class. In the second qualitative part, I will explore

different manifestations of still-life, period-2 oscillator life forms, and other forms of life. I

will also present a t-SNE of the conditioned outputs of different GoL outcomes.

5.2. Quantitative Evaluation

We present five sets of figures.

Firstly, we trained a conditional diffusion model on the random dataset constructed with no

quotas. The categories, which are also the various conditions, are alive, dead, still-life, period-2

oscillator, and other form of life after 200 timesteps. Samples may possess more than one class

label, such as being both alive and a still-life. We compare each class’ natural occurrence in

the random dataset to their occurrence when sampling from the diffusion model trained on

this dataset with unconditioned generations. This seeks to see the ability of the unconditioned

sampling to replicate various forms of life.

Using an individual probability of each cell being alive of 0.5 (we refer to this as the threshold),

and a sample generation of size 500, Figure 2 and Figure 3 are generated. While the

diffusion model produced more dead and less alive configurations in Figure 2, this is subject

to the threshold, which was set at 0.5, and thus no real conclusions can be made between the

18



Figure 2: Percentage of Each Type of Generations Between Random Training Dataset and Uncondi-
tioned Generations from Diffusion Model Trained on Random Dataset

Figure 3: Percentage of Each Type of Living Generations Between Random Training Dataset and
Unconditioned Generations from Diffusion Model Trained on Random Dataset

difference between alive and dead in the training dataset and the generations from the model.

When we normalize percentages for only the types of life for alive configurations in Figure

3, we can see that generations from the mode increase the proportion of life that are still life,

decrease the proportion of period-2 oscillators, and marginally decrease the proportion of

the other category. This seems to point towards more complex structures, such as period 2

19



Figure 4: Percentage of Each Type of Generations Between Quota Training Dataset and Unconditioned
Generations from Diffusion Model Trained on Quota Dataset

oscillators, being more difficult for the model to form without conditioning.

In the quota dataset, there are set quotas for proportions of dead, alive, and each category of life.

In the quota dataset, as seen in Figure 4, dead samples are once again easier to generate than

alive samples from the unconditioned model, although this is likely an effect of the threshold

being 0.5.

Secondly, we trained a conditional diffusion model on the quota dataset. We compare each

class’ occurrence in the quota dataset to their occurrence when sampling from the diffusion

model trained on this dataset with unconditioned generations. This seeks to see the ability of

the unconditioned sampling to replicate various forms of life given that there are sufficient

examples of rare forms of life in the training dataset. The results can be seen in Figure 4 and

Figure 5.

The living-only chart, Figure 5, shows that unconditioned generations seem to favor still life

and period-2 oscillators far more heavily than other forms of life, which are by definition more

complex, since still life and period-2 oscillators are the simplest. There is a much larger jump

in still life production than period-2 production, further supporting that simpler structures are

modelled more easily.

Thirdly, we compare each class’ occurrence during unconditioned sampling with their oc-

currence with each condition applied. This seeks to find the efficacy of each conditional

embedding at selecting for cellular automata of that kind given the random dataset. We present

20



Figure 5: Percentage of Each Type of Living Generations Between Quota Training Dataset and
Unconditioned Generations from Diffusion Model Trained on Quota Dataset

the novelty of generated samples. Particularly, we ensure that no generated configurations are

direct clones of initial frames in the training data, invariant to reflections and rotations. We do

not check for invariance to translation due to the compute associated with translation checks

for all 300 samples across all 4000 training steps, as well as that we still consider translations

to be valid since we intend for the diffusion model to pick up on patterns and replicate them.

We check for novelty to ensure that the model is not memorizing entire 32 by 32 grids. The

results can be seen in Figure 6 and Figure 7.

7. Figure 6 demonstrates that, when trained on a random dataset, and when training conditional

embedding on each of the five categories in the figure, the application of the conditional

embedding increases the proportion of generations containing that type of life. The threshold

was 0.3. For example, the unconditioned bars (excluding alive, which will repeat with the

individual life categories) all add to 100 percent because they represent the same run, and

the proportions of behavior from that one run. Each of the five conditioned bars represent

a different run, thus they do not add to 100 percent. For example, the alive conditioned bar

represents the generation from the model when only the alive condition is applied. This results

21



Figure 6: The Occurrence of Each Class Between Unconditioned and Targeted Conditioned Genera-
tions When Trained on the Random Dataset

in a larger proportion of the generations being alive, as seen when compared to the no condition

run. The highest increases in proportion from unconditioned to conditioned are dead and alive,

likely because they represent broad patterns. Other improves slightly, still-life marginally

improves, and period-2 oscillator decreases. This decrease in the case of period-2 oscillators

can likely be attributed to how the random dataset does not have quotas for specific types

of life and thus the model trained on the random dataset did not get enough representative

samples to train an embedding that could replicate the type of behavior. The novelty rate of all

5 runs was 100 percent, meaning no frame was a direct rotation or reflection of an image in

the training set.

Fourthly, we trained a conditional diffusion model on the quota dataset to generate Figure

7. We compare each class’ occurrence during unconditioned sampling with their occurrence

with each condition applied. This seeks to find the efficacy of each conditional embedding at

selecting for cellular automata of that kind given the quota dataset. We present the novelty of

generated samples.

Figure 7 is the same as Figure 6 except the model was trained on the quota dataset, thus

providing the model with a large enough dataset for each type of life, regardless of rareness.

22



Figure 7: The Occurrence of Each Class Between Unconditioned and Targeted Conditioned Genera-
tions When Trained on the Quota Dataset

Both alive and dead conditions increase proportion. Between still life and period-2 oscillators,

the increase in proportion is much larger for still life. This supports the idea that more

complicated patterns are more difficult for the diffusion model to learn. The other section

decreased, likely becuase the category is a catch-all for other forms of life and does not have a

consistent meaning.

Finally, we create a 5 by 5 cosine similarity matrix comparing the similarities between the five

conditional class embeddings for the following classes: alive, dead, period-2 oscillator, still

life, and other life. This can be seen in Figure 8.

5.3. Qualitative Evaluation

In the following section, yellow cells indicate alive cells and grey cells indicate dead cells.

Interestingly, the alive and death conditions are the most similar, followed by the relationship

between still-life and period-2 oscillator, the relationship between death and period-2 oscillator,

and the relationship between alive and still-life. The least similar are other life and period-2

oscillators. It seems that similarity seems to reflect the reliance on structure rather than living

or dying. For example, death and period-2 oscillation might be very different because period-2

23



Figure 8: Cosine Similarity Between Class Embeddings

oscillation requires on the existence of structure where death does not. This is not entirely

consistent throughout the matrix, so it is unclear whether the cosine similarity of embeddings

given there are only five can yield meaningful results.

We provide four figures. Firstly, we show common forms of still-life found in the generations

from the model trained on the quota dataset. Samples were generated until 100 still-lifes were

collected. In the chart below, the counts for individual structures will be the count including if

more than one structure occurred in a single generation (i.e. if there are two of type A in a

single structure, the count is incremented by 2). I also add counts of combinations of structures.

This chart reinforces the idea that simpler patterns are more easily generated by the model,

although there is room for diversity. This is demonstrated by the dominance of Pattern A but

the interesting presence of pattern E. The frequency of combinations of structures suggests

that the diffusion model is learning to create these structures independently.

Secondly, we show common forms of period-2 oscillators found in the generations from the

model trained on the quota dataset. Samples were generated until 100 two-period oscillators

were collected.

24



Figure 9: Samples of Period 2 Oscillators Generated from Model Trained on Quota Dataset

This chart once again reinforces that simpler patterns are easier for the diffusion model to

learn due to dominance of pattern F. Pattern G was also very interesting to observe as it is just

a combination of 4 F’s. This suggests that the diffusion model also learns combinations of

structures. t is unclear whether this means that the diffusion model understands modularity or

if it is memorizing these large-scale combinations as well.

Thirdly, we present t-SNE visualizations of the embeddings that denoise the intermediate

outputs at each time step. At each time step, a time embedding (pre-noising) and time

embedding and class embedding combination (post-noising) are plotted. t-SNE visualizations

of intermediate outputs were created but there were no discernible clusters or differences

between inclusion of a class, thus the figure was not included in this report.

25



Figure 10: Samples of Still-Life Generated From Model Trained on Quota Dataset

Figure 11 is a visualization of the pre-noise and post-noise embeddings for the dead and alive

conditions. Each point represents an occurrence of the embedding at a timestep.

There is a clear structure separating plotted points from one another if they do not represent

the same combination of embeddings except in the case of the alive time only embedding,

the alive time and class embedding, and the death time only embedding. It is interesting to

see how the death time and class embedding exists at the edge of the structure. This is very

26



Figure 11: t-SNE: Basic Grouping (Death vs. Alive) for Pre-Noise (Time Embedding Only) and Post-
Noise (Class and Time Embedding)

different from the death time only embedding which exists exclusively intermingled with the

alive time only embedding and the alive time and class embedding. The clustering of the alive

time and class embedding in two different areas is also interesting to observe. The formation

of curved lines is especially interesting.

I wonder whether the mixing of the embeddings in the center would be separated if one

dimension is changed. For example, if we imagine this 2-D visualization as a projection of a

3-D structure, if we were to observe it from its top, we might see the red and orange clusters

mixed. Thus, the separation of clusters is not immediately interpretable.

Figure 12 is similarly structured to the last except all embeddings exist in one cluster. The

still life time and class embedding and the oscillator time embedding exist at the bottom. The

time and class embedding, the alive time and class embedding, and the death time and class

embedding are distinct and all at the top. Every other embedding is mixed in the center. The

27



Figure 12: t-SNE: All 5 Class Embeddings for Pre-Noise (Time Embedding Only) and Post-Noise
(Class and Time Embedding)

same question of rotation as in the previous figure remains.

I cannot discern a pattern in the structure of the visualization that might link back to the

meaning of the embedding placements in either of the figures above.

6. Summary

6.1. Conclusions

Through my evaluation, I demonstrate that conditional diffusion in the form of a denoising

diffusion probabilistic model using classifier-free guidance and FiLM-based class embeddings

can effectively learn and increase the occurrence discrete cellular automata patterns in the

Conway’s Game of Life environment. In particular, it is capable of distilling embeddings that

yield conditional sampling that increases the prevalence of targeted conditioned forms of life

28



and behavior in the cellular automata. It can be observed that patterns of simpler structure are

easier to generate using diffusion. Additionally, diffusion can easily learn combinations of

smaller structures. Novelty metrics confirm diversity of the generations as not being clones

of the training set 32 by 32 grids. Visualizations of motifs and t-SNE visualizations of the

embeddings demonstrate the various types of patterns that the diffusion model can emulate as

well as the distinct difference between embeddings of different conditions. This establishes

conditional diffusion as a technique for generative modelling of logical rule-based discrete

environments.

6.2. Limitations

One limitation is the size of the training sample, which was 4000 samples for either dataset.

This was limited to 4000 to ease compute use due to limited resources and time, but could

hae potentially led to underrepresentation of rare forms of life. This would result in biased

outcomes.

A second limitation is that only two forms of life were properly categorized, still-life and

period-2 oscillators. Oscillators of larger than period-3 as well as gliders and spaceships

were not categorized due to the increased time complexity of such operations. This limitation

means that the outcomes of this technique on many lfie forms in Conway’s Game of Life are

unknown.

A third limitation is the use of the 32 by 32 grid as the only grid upon which these embeddings

act. The effects of this are twofold. Firstly, this limits the size of configurations that could be

explored in this project. Second, the generalizability of conditional embeddings to smaller or

larger grids is unknown.

6.3. Future Work

Immediate next steps would be to scale to larger grid resolutions to explore the generalizability

of the conditional embeddings. Additionally, conducting the same analysis on oscillators

of larger periods as well as gliders and spaceships would be interesting. Applying this

29



framework to various cellular automata rule sets such as Brian’s Brain in order to evaluate the

generalization of the technique as a whole on increasingly complex environments would also

be very insightful.

7. Acknowledgements

I would like to express my gratitude to my advisor Professor Vikram Ramaswamy for his

guidance and mentorship throughout my IW.

8. Honor Code

This paper represents my work in accordance with University Regulations.

Jin Schofield

30



9. References

Arjovsky, M., Chintala, S., Bottou, L. (2017, December 6). Wasserstein Gan. arXiv.org.

https://arxiv.org/abs/1701.07875 Austin, J., Johnson, D. D., Ho, J., Tarlow, D., Berg, R. van

den. (2023, February 22). Structured denoising diffusion models in discrete state-spaces.

arXiv.org. https://arxiv.org/abs/2107.03006

Dhariwal, P., Nichol, A. (2021, June 1). Diffusion models beat gans on image synthe-

sis. arXiv.org. https://arxiv.org/abs/2105.05233

Evolving cellular automata with genetic algorithms. (n.d.-a).

https://melaniemitchell.me/PapersContent/evca-review.pdf

The fantastic combinations of John Conway’s new solitaire ... (n.d.-c).

https://web.stanford.edu/class/sts145/Library/life.pdf

Gilpin, W. (2020, January 16). Cellular automata as Convolutional Neural Networks. arXiv.org.

https://arxiv.org/abs/1809.02942

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,

A., Bengio, Y. (2014, June 10). Generative Adversarial Networks.

arXiv.org. https://arxiv.org/abs/1406.2661

Ho, J., Jain, A., Abbeel, P. (2020, December 16). Denoising Diffusion Probabilistic models.

arXiv.org. https://arxiv.org/abs/2006.11239

Jang, E., Gu, S., Poole, B. (2017, August 5). Categorical reparameterization with Gumbel-

31



Softmax. arXiv.org. https://arxiv.org/abs/1611.01144

Kingma, D. P., Welling, M. (2022, December 10). Auto-encoding variational Bayes. arXiv.org.

https://arxiv.org/abs/1312.6114

Liu, W., Ren, G., Yu, R., Guo, S., Zhu, J., Zhang, L. (2022, July 4). Image-adaptive YOLO

for object detection in adverse weather conditions. arXiv.org. https://arxiv.org/abs/2112.08088

Liu, X., Zhang, L., Guan, H. (2023, January 26). Uplifting message passing neural net-

work with graph original information. arXiv.org. https://arxiv.org/abs/2210.05382

Lokhov, I., Ivan Lokhov (he/him) is a data visualization developer at Datawrapper. When

coding at Datawrapper just isn’t enough. (2021, June 17). Game of Life: Datawrapper blog.

Datawrapper. https://blog.datawrapper.de/game-of-life/

Mordvintsev, A., Randazzo, E., Niklasson, E., Levin, M. (2020, August 27). Growing

neural cellular automata. Distill. https://distill.pub/2020/growing-ca

Nichol, A., Dhariwal, P. (2021, February 18). Improved denoising diffusion probabilis-

tic models. arXiv.org. https://arxiv.org/abs/2102.09672

Perez, E., Strub, F., de Vries, H., Dumoulin, V., Courville, A. (2017, December 18). FiLM:

Visual reasoning with a general conditioning layer. arXiv.org. https://arxiv.org/abs/1709.07871

Play John Conway’s Game of Life. Play John. (n.d.). https://playgameoflife.com/

Poisson variational autoencoder. (n.d.-b). https://arxiv.org/html/2405.14473v1

32



Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., Ganguli, S. (2015, November 18).

Deep unsupervised learning using nonequilibrium thermodynamics.

arXiv.org. https://arxiv.org/abs/1503.03585

Tapia-McClung Hernandez-Montoya. A Diffusion Approach to the Dynamics of Con-

way’s Game of Life (gol): Emergence of multiple power law fluctuation regimes. (n.d.-b).

https://www.researchgate.net/publication/346835637_A_Diffusion_Approach_to_the_Dynamics

_of_Conway’s_Game_of_Life_GoL_Emergence_of_Multiple_Power_Law_Fluctuation_Regimes

Wolfram, S. (1970, January 1). Cellular automata: A new kind of science: Online by Stephen

Wolfram [page 170]. Wolfram Science and Stephen Wolfram’s “A New Kind of Science.”

https://www.wolframscience.com/nks/p170–cellular-automata/

You, J., Ying, R., Ren, X., Hamilton, W., Leskovec, J. (1970, January 1). GraphRNN:

Generating realistic graphs with deep auto-regressive models. GraphRNN: Generating Realis-

tic Graphs with Deep Auto-regressive Models.

https://www.bibsonomy.org/bibtex/2526f6b87f5e96347d9874bbbaf093c77/analyst

LaTeX was used for formatting.

ChatGPT and Grok were used for coding support and debugging with my advisor’s approval.

"Play John Conway’s Game of Life" (cited above) was used for visualizations in figures

9 and 10.

Google Drawing was used for Figure 1.

33


	Introduction
	Motivation and Goals
	Contributions

	Background and Related Work
	Cellular Automata and Conway's Game of Life
	Generative Machine Learning and Applications to Discrete Data
	Diffusion
	Conditional Diffusion and FiLM Layers
	Previous Work in Synthesis of Cellular Automata
	Embedding Visualization and Interpretability

	Approach
	Key Novel Idea: Why It Is New and Why It is Effective
	Overarching Explanation
	Datasets

	Implementation
	Diffusion Model Architecture
	Components of Network: Descriptions
	Training Procedure
	Sampling and Inference
	 Reproducibility and Environment Setup
	Dataset Generation
	Labeling Module
	Model Code
	Diffusion Engine
	Notebook
	Hyperparameter Ablation
	Previous Approaches

	Evaluation
	Metrics
	Quantitative Evaluation
	Qualitative Evaluation

	 Summary 
	Conclusions
	Limitations
	Future Work

	Acknowledgements
	Honor Code
	References

