
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Completed as final project for Caltech VURP Program 2024

IMPLEMENTING IN-CONTEXT LEARNING IN DIFFU-
SION FOR KEY POINT GENERATION

Jin Schofield, Rogério Guimarães, Pietro Perona
Princeton University, California Institute of Technology

ABSTRACT

Latent diffusion model training is a computationally heavy process that prevents
the flexible instilling of expert knowledge after the process’ completion. In-
context learning is a form of learning in transformer-based language models where
information can be taught to the model through an input prompt without having
to re-train weights. An important problem in computer vision is that of key point
generation, often applied in tasks such as pose estimation. This research applies
a process analogous to in-context learning to unsupervised key point generation
using latent diffusion to allow key point generation to benefit from added knowl-
edge without having to re-train the model. This is accomplished by appending an
initially randomized embedding (which is later optimized by a loss function) to
the original embedding conventionally used in cross-attention during latent diffu-
sion. This randomized embedding is trained on a small new dataset of five images
paired with attention maps whose maxima are desired key points. After optimiza-
tion, this new embedding guides the cross-attention mechanism to create attention
maps concentrated onto the left elbow in test images in 26.25% of cases, as op-
posed to near zero originally. Increasing the training dataset size from 5 to 20 did
not improve accuracy. Accuracy for identifying the head was 12.00%, and that
for identifying the left elbow was 0.00%. Key points are the coordinates most im-
pacted by attention in an image. The embedding is created using a loss function
minimizing mean squared error between pixels of predicted and ground truth de-
sired attention maps, optimizing localization of Gaussians in the attention maps,
and maximizing equivariance of the key points between transformed versions of
the same image. This research allows us to understand and improve how diffusion
models create robust and modular abstract representations that meaningfully and
efficiently encode semantic information in images.

1 INTRODUCTION

In computer vision, an efficient method exists to identify key points — parts of an image that would
appear important to humans as well — using unsupervised machine learning that does not require
re-training of diffusion models or labeling of large new datasets. However, if a person wished to
utilize expert data and design the key points to occur in a specific area, this would not be possible
in an efficient manner. Before delving into the research of this paper, which explores how to
implement efficient specific key point generation, some background information will be discussed.

2 BACKGROUND

Diffusion is the process by which Gaussian noise is gradually added to images in a dataset until the
original image is converted entirely to noise. A function learns the noise that is added to the images.
Then, an image that is initially entirely noise can use this function to remove noise (denoise) until
the remaining pixels resemble an image that could have been sampled from the original dataset.

The process of diffusion can be quite inefficient when applied to the actual pixels of an image.
Latent diffusion can increase the efficiency of diffusion. The images from the original dataset are
sent through an encoder that distills the image into a latent representation, which is an encoding of

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Completed as final project for Caltech VURP Program 2024

Figure 1: The task that this research aims to accomplish: shifting key point generation to specific,
desired locations

Figure 2: The process of diffusion (Introduction to diffusion models for machine learning)

the image’s high-level features. Diffusion is then run on this latent representation. When an image is
denoised, it is run through a decoder, which converts the denoised image encoding into an image in
the pixel space. Running diffusion in the latent space rather than the pixel space preserves accuracy
while increasing efficiency.

Cross-attention is a mechanism that allows for images to be denoised with an added condition of an
embedding. For example, in popular diffusion models such as Midjourney, the text prompt that a user
gives the diffusion model is converted into tokens, which are represented as a numerical embedding.
The embeddings are converted into key-value pairs. The image that needs to be denoised is converted
into queries. The queries and key-value pairs are matched and guide the removal of noise from the
image.

Attention maps can be printed during this process. They can also be displayed showing how each
token impacted attention.

Key points can be generated with the help of the cross-attention mechanism. In one particular
paper, a randomized embedding is used in cross-attention (Hedlin et al.). A loss function is used to
optimize the embedding that conditions for the attention maps to form single-mode Gaussians that
land on equivariant points regardless of image transformations. When the embedding is optimized,
the attention map formed during the diffusion contains single-mode Gaussians (one for each key
point). The maximum coordinate of these Gaussians are considered key points. Note in figure 5
how these key points are generated in an unsupervised manner and, although equivariant, do not
generate on a particular point specified by the user of the algorithm.

The images below are some samples of the unsupervised key point generation from this model. The
number of key points in the sample generations vary from 1 to 10. Due to key points having some
distance enforced between them, it seems that the model works better and more consistently when
generating ten key points at a time rather than less.

Figure 3: The process of latent diffusion. (Cong et al.)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Completed as final project for Caltech VURP Program 2024

Figure 4: A diagram of the cross-attention mechanism (Kosar)

Figure 5: (top) Attention by token, (bottom) Attention by timestamp

Figure 6: The architecture from ”Unsupervised key points from Pretrained Diffusion Models”
(Hedlin et al.)

Figure 7: Example generations from the unsupervised key point generation model from ”Unsuper-
vised key points from Pretrained Diffusion Models” (Hedlin et al.)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Completed as final project for Caltech VURP Program 2024

Figure 8: The mechanism behind textual inversion (Gal et al.)

Figure 9: An example of image generations using textual inversion (Gal et al.).

Another interesting paper that inspires this research is ”An Image is Worth One Word: Personalizing
Text-to-Image Generation using Textual Inversion” (Gal et al.). In this paper, a standard diffusion
model generates images of a particular theme, such as paintings. A new idea not trained into the
diffusion model, such as that of a cross-legged statue, is converted into an embedding. This em-
bedding is appended to other embeddings used by the diffusion model. The appending of this new
embedding representing this new idea allows the original diffusion model to generate an image of
its original theme with the new idea incorporated into it, i.e. an image of a painting of a cross-legged
statue. This would not have been possible without the appending of the new embedding unless the
diffusion model was trained again with many examples of this new idea, which would be inefficient.
This paper demonstrates how appending embeddings to other embeddings can augment the output
of a diffusion model without having to re-train the diffusion model.

A final important concept that inspires this research is that of in-context learning. In-context learning
is a notion in natural language processing of improving a model’s accuracy without retraining the
model’s weights. In NLP specifically, this occurs by adding context (such as input-output pairs) into
input prompts that are tokenized and given to the model. This research aims to implement in-context
learning — that is improve a model’s performance without re-training by providing more context —
in the realm of computer vision and diffusion.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Completed as final project for Caltech VURP Program 2024

Figure 10: An example of how in-context learning works in natural language processing (Xie and
Min)

Figure 11: We intend to shift the key point to a specific desired area rather than a vaguely important
key point auto-generated by the unsupervised key point generation method (Hedlin et al.)

3 PROBLEM

This research aims to allow for the incorporation of expert knowledge, or the increase in flexibility
of usage, of diffusion-based unsupervised key point generation. Specifically, we aim to cause key
points to be generated in specific places in an image specified by a user. We aim to do this without
retraining diffusion model weights and without collecting a large dataset. We will specifically be
aiming for the key point to be on the left foot, head, and elbow. Solving this problem would be
useful for users of diffusion models who want to apply key point generation efficiently for a specific
use case where context might be important (i.e. sports pose estimation). To clarify, a key point
is the coordinate pair of maximum attention in an attention map. At the end of this paper, we will
demonstrate how we were able to have the point land on a desired key point 26.5% of the time when,
without using this method, it landed on the intended key point coordinate very rarely (near zero).

4 METHODS

The dataset I use is from the Max Planck Institute (3D poses in the wild dataset). I use a training
dataset of 5 images for some iterations and a training dataset of 20 images for other iterations. The
test dataset is 10 images.

The Three Layers of Computation

There are three layers of computation in my approach. There are two frozen layers, the diffusion
model itself, and the embedding generation from the unsupervised key point generation paper men-
tioned in the background (Hedlin et al.). This second layer uses a loss function that optimizes for the
creation of single-mode Gaussians in the attention maps (localization) and for key points to land in
the same place regardless of image transformations (equivariance), My contribution is adding a third
layer, an extra embedding appended to the embedding in the second layer that uses a loss function
that minimizes mean squared error between all the pixels in a ground truth attention map and the
predicted attention map for training images.

The following is a diagram of the final approach. I append an embedding to the original embedding
from the unsupervised key point generation method (Hedlin et al.).

Metrics of Success

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Completed as final project for Caltech VURP Program 2024

Figure 12: The three layers of my approach

Figure 13: The architecture of my method

Overall, I will be aiming to maximize the proportion of predicted key points that land within a
specific pixel range of my desired key point.

While working towards this ultimate metric, I use two metrics to guide my hyperparameter optimiza-
tion. Firstly, I calculate the mean squared error between the attention in the pixels of the ground truth
attention maps and attention in the pixels of the predicted attention maps. These ground truth atten-
tion maps are generated so that the pixel with the maximum attention is where the desired key point
is located.

The second metric is looking for semantic meaning in the error. For example, in figure 14, the left
photo shows a lack of consistency in the direction of the error, whereas the right photo’s key points
fixate on the head (this generation is intending to place the key point on the foot). This indicates
there may be a different hyperparameter to be optimized between these two types of errors. For
example, the left image would benefit from weighting equivariance more in the loss function while
the right would not.

Failed Approaches

1. MSE of Only Maximum

In this approach, the loss function for the third layer of my approach minimized the mean squared
error between the desired key point coordinate and the predicted key point coordinate. This did not
improve accuracy and was not used because it did not reflect the nature of attention maps, which are
integral to how diffusion functions. It thus did not provide a differentiable function along which the
loss could improve.

2. Using CLIP and YOLO

A second approach was to use YOLO to create a bounding box around predicted key points (Redmon
et al.). Then, the portion of the image inside the bounding box is processed by CLIP and converted
into an embedding (Ratford et al.). The MSE between the embedding of the predicted key point
and an embedding generated from the area of the image of the desired key point is used for the loss

Figure 14: Examples of semantically meaningful and semantically meaningless error

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Completed as final project for Caltech VURP Program 2024

Figure 15: A diagram of the failed approach using CLIP and YOLO

Figure 16: Shaded Areas for Results of Left Foot Optimization using 5 Training Images

function. This did not improve accuracy. It was not used because CLIP is trained on entire objects,
not parts of objects, and thus could not properly create embeddings for parts of the human body from
my dataset. Additionally, this method does not provide a differentiable, smooth loss map to traverse.
A hybrid version of the MSE of maximum point approach and this CLIP and YOLO approach was
also tested, but did not improve accuracy.

The final hyperparameters were the following. How these hyperparameters were optimized and what
they are is explained in the discussion section of this paper. Ground truth maps utilized a Gaussian
distribution with a standard deviation of 0.05 times each dimension of the training image. The
third layer incorporated equivariance and localization into the loss function in addition to MSE of
attention maps, with a relative weight of 1 localization, 1 equivariance, and 5 MSE. The relative size
of the appended embedding in the third layer that is appended onto the second layer embedding is
0.2. 1 augmentation step and 100 optimization steps were used. All hyperparameters were optimized
by comparing to results when optimizing for the left foot.

5 RESULTS

When training on only 5 training images and optimizing for the left foot, 26.25% of key points
landed within 300 pixels of the desired key point in a meaningful direction (or the yellow area in
figure 16) with a standard deviation of 18.06%. 17.50% of key points landed within 40 pixels of
the desired key point in any direction (or the orange area in figure 16) with a standard deviation of
15.86%.

When training on 20 training images and optimizing for the left foot, 21.00% of key points landed
within 300 pixels of the desired key point in a meaningful direction (or the yellow area in figure 16)
with a standard deviation of 27.89%. 14.00% of key points landed within 40 pixels of the desired
key point in any direction (or the orange area in figure 16) with a standard deviation of 15.72%.

When training on 20 training images and optimizing for the point to land on the head, 12.00% of
key points landed within 200 pixels of the desired key point in a meaningful direction (or the yellow
area in figure 17) with a standard deviation of 16.85%. 9.00% of key points landed within 40 pixels

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Completed as final project for Caltech VURP Program 2024

Figure 17: Shaded Areas for Results of Optimization for Head key point using 20 Training Images

Figure 18: Shaded Areas for Results of Optimization for Left Elbow key point using 20 Training
Images

of the desired key point in any direction (or the orange area in figure 17) with a standard deviation
of 15.94%.

When training on 20 training images and optimizing for the point to land on the left elbow, 0.00%
of key points landed within 40 pixels of the desired key point in any direction (or the orange area in
figure 18).

Qualitative findings include how, when optimizing for a left foot key point and the key point is not
landing where desired, often the point lands on easily identifiable objects with distinct colors and
shapes such as the head or basketball in the image.

Additionally, accuracy seemed to rely heavily on the embedding. For example, for any given run
using one embedding, it was more likely for 0/10 or 3/10 key points to land in the correct place, not
1/10 or 2/10. The correct hits come in clusters.

Figure 19: Key point landing on head consistently despite desired key point being left foot

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Completed as final project for Caltech VURP Program 2024

Figure 20: Gaussian vs Cauchy Distribution

Figure 21: An example ground truth attention map

6 DISCUSSION

Multiple hyperparameters were optimized.

1. Type of Ground Truth Attention Map

I considered both the Gaussian and Cauchy distribution to form the ground truth attention maps. I
considered Cauchy because it has thicker tails which would provide more learning signal to attention
at the tails, allowing the maximum point to move closer to the desired maximum. It also has a
steeper approach to the maximum within two standard deviations of the center, which allows for the
predicted point to be more concentrated in the center. I did not end up using the Cauchy distribution
because the localization aspect of the loss function in the second layer optimizes for Gaussian-
shaped distributions, and I wanted the elements of the loss function to be consistent. Using Cauchy
also did not improve accuracy.

2. Standard Deviation of Gaussian

The ideal standard deviation for the Gaussian in the ground truth attention maps was experimentally
determined to be 0.05 of the size of each dimension of the image.

3. Whether to Combine Layer 2 and Layer 3

Experimentally, it was more effective to add equivariance and localization calculations to the loss
function for the third layer that originally only calculated MSE of attention maps. This is likely
because the equivariance and localization calculations acted as regularizers. They reduced the search
space and thus minimized overfitting and avoided the key points landing on local minima.

4. Weights of Layer 3

Experimentally, the relative weighting of localization, equivariance, and attention map MSE in the
embedding appendage was optimized to be 1 localization, 1 equivariance, and 5 MSE.

5. Size of Appended Embedding

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Completed as final project for Caltech VURP Program 2024

Figure 22: Diagram of updated layers

Figure 23: Examples of key point generation with varying relative weights of third layer loss func-
tion

Experimentally, the size of the appended embedding (that is, the size of the third layer embedding
which is appended to the second layer embedding) was optimized at 0.2 times the size of the second
layer embedding.

6. Number of Augmentation Steps

Augmentation steps are the number of times that the attention is re-run with the same embedding
but with different transformations (rotations, scaling, translations, etc...) to improve robustness. The
coordinate locations of the key points are averaged across all augmentation steps. Although the
original unsupervised key point generation paper used 10 augmentation steps, 1 was found to be
experimentally optimal. At this point, the model identified the left foot around 20% and points
were either very close to the correct point or very far (only rarely moderately far). Thus, I believe 1
step was optimal because averaging the outcomes for ten photos would often cause the average for
each of the ten photos to never be on the left foot because the correct points would be averaged with
the incorrect points.

7. Number of Optimization Steps

Experimentally, the optimal amount of optimization steps was 100.

It seems that increasing the number of training images did not meaningfully improve accuracy. This
is likely due to how the increase from 5 to 20 images is not large in comparison to datasets used to
train the diffusion model.

The accuracy dropped when optimizing for the head. This is likely because hyperparameters might
be overfit for optimizing for the left foot since they were optimized while running experiments for
the left foot key point optimization. The accuracy for the identification of the left elbow was very
low. This signifies that this method works more effectively on key points that are visibly different
from the rest of the image, such as having a contrasting color.

There was also some interesting behavior likely due to randomness, although none was replicable.
Firstly, with one optimization step, there was an instance where the left foot was identified 100% of
the time.

Figure 24: Examples of key point generation with varying appended embedding sizes

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Completed as final project for Caltech VURP Program 2024

Figure 25: Examples of key point generation with varying numbers of optimization steps

Figure 26: Left foot optimization with 1 optimization step with 100% accuracy (not replicable)

Additionally, even at suboptimal hyperparameters (e.g. third layer embedding being the same size
as second layer embedding), the key point was capable of landing on the head consistently or the
basketball consistently. This result, as seen in the following photo, occurred when optimizing for
the key point to land on the left foot.

7 CONCLUSION

In conclusion, using a supervised method with 5 input images, in-context learning was able to in-
crease the ability of the key point generation to target the left foot from near zero to 26.25%. More
identifiable body parts as key points are better suited for this method. Increasing the size of the
training dataset from 5 to 20 does not increase accuracy. Applying the same method to locating the
head gave 12.00% accuracy, and doing so for the left elbow gave 0.00% accuracy.

Implications

This work signifies that it is possible to optimize key point generation for specific semantic locations
and use cases while maintaining the efficiency of unsupervised key point generation. This can be
useful in pose estimation. It also broadly shows how in-context learning can be implemented in
computer vision.

Next Steps

I plan to pursue several next steps.

Firstly, I plan to train the original embedding (that of the second layer) while aiming for ten key
points (which is a controllable parameter), which seems to make the range of key points produced
more stable, equivariant, and semantically salient. Then, I will proceed as normal and train the third
layer looking for one key point. As of this paper’s writing, I trained the second layer embedding
looking for one key point.

I also intend to train the original embedding on unlabelled images from the same dataset used for
the third layer embedding to take advantage of semi-supervised learning.

Thirdly, I plan to implement the object similarity metric as a more precise measure for accuracy and
perhaps incorporate it into the loss function.

I will also try to increase accuracy by tuning hyperparameters while testing results on various dif-
ferent desired key points rather than only one (e.g. head, left elbow, etc...). My hyperparameters as
of this paper’s writing were trained while only looking at results of left foot key point optimization.

I also intend to experiment with larger training datasets, more varied training datasets, and while
aiming to detect multiple specific key points at a time.

Figure 27: Left foot optimization whose key point lands on head many times

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Completed as final project for Caltech VURP Program 2024

Figure 28: Examples of Left Foot Predicted Key Points with 20 Training Images

Figure 29: Examples of Head Predicted Key Points with 20 Training Images

In the far future, I hope to explore ways to better represent semantic meaning by, for example,
comparing embeddings in some way that forms a differentiable loss function.

ACKNOWLEDGMENTS

Thank you to Professor Perona for giving me this opportunity and Rogério Guimarães and Markus
Marks for their generous guidance, supervision, and help! I would also like to thank the Caltech
VURP program and the Princeton Social Impact Internship for funding and coordinating my intern-
ship.

REFERENCES

3D poses in the wild dataset. 3DPW — Real Virtual Humans. (n.d.). https://virtualhumans.mpi-
inf.mpg.de/3DPW/license.html
Cong et al. A Latent Diffusion Model for Protein Structure Generation, 2023.
Eric Hedlin et al. Unsupervised key points from Pretrained Diffusion Models, 2024.
Introduction to diffusion models for machine learning. SuperAnnotate. (n.d.-a).
https://www.superannotate.com/blog/diffusion-models
Ratford et al., Learning Transferable Visual Models From Natural Language Supervision, 2021.
Redmon et al. You Only Look Once: Unified, Real-Time Object Detection, 2016.
Rinon Gal et al., An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual
Inversion, 2022.
Vaclav Kosar. Cross-attention in Transformer architecture. Vaclav Kosar’s face photo.
https://vaclavkosar.com/ml/cross-attention-in-transformer-architecture December 28, 2021.
Sang Michael Xie and Sewon Min. How does in-context learning work? A framework for understanding
the differences from traditional supervised learning. SAIL Blog. https://ai.stanford.edu/blog/understanding-
incontext/ August 1, 2022.

Figure 30: Examples of Left Elbow Key Point with 20 Training Images

12


	Introduction
	Background
	Problem
	Methods
	Results
	Discussion
	Conclusion

