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ABSTRACT

Latent diffusion model training is a computationally heavy process that prevents
the flexible instilling of expert knowledge after the process’ completion. In-
context learning is a form of learning in transformer-based language models where
information can be taught to the model through an input prompt without having
to re-train weights. An important problem in computer vision is that of key point
generation, often applied in tasks such as pose estimation. This research applies
a process analogous to in-context learning to unsupervised key point generation
using latent diffusion to allow key point generation to benefit from added knowl-
edge without having to re-train the model. This is accomplished by appending an
initially randomized embedding (which is later optimized by a loss function) to
the original embedding conventionally used in cross-attention during latent diffu-
sion. This randomized embedding is trained on a small new dataset of five images
paired with attention maps whose maxima are desired key points. After optimiza-
tion, this new embedding guides the cross-attention mechanism to create attention
maps concentrated onto the left elbow in test images in 26.25% of cases, as op-
posed to near zero originally. Increasing the training dataset size from 5 to 20 did
not improve accuracy. Accuracy for identifying the head was 12.00%, and that
for identifying the left elbow was 0.00%. Key points are the coordinates most im-
pacted by attention in an image. The embedding is created using a loss function
minimizing mean squared error between pixels of predicted and ground truth de-
sired attention maps, optimizing localization of Gaussians in the attention maps,
and maximizing equivariance of the key points between transformed versions of
the same image. This research allows us to understand and improve how diffusion
models create robust and modular abstract representations that meaningfully and
efficiently encode semantic information in images.

1 INTRODUCTION

In computer vision, an efficient method exists to identify key points — parts of an image that would
appear important to humans as well — using unsupervised machine learning that does not require
re-training of diffusion models or labeling of large new datasets. However, if a person wished to
utilize expert data and design the key points to occur in a specific area, this would not be possible
in an efficient manner. Before delving into the research of this paper, which explores how to
implement efficient specific key point generation, some background information will be discussed.

2 BACKGROUND

Diffusion is the process by which Gaussian noise is gradually added to images in a dataset until the
original image is converted entirely to noise. A function learns the noise that is added to the images.
Then, an image that is initially entirely noise can use this function to remove noise (denoise) until
the remaining pixels resemble an image that could have been sampled from the original dataset.

The process of diffusion can be quite inefficient when applied to the actual pixels of an image.
Latent diffusion can increase the efficiency of diffusion. The images from the original dataset are
sent through an encoder that distills the image into a latent representation, which is an encoding of
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Figure 1: The task that this research aims to accomplish: shifting key point generation to specific,
desired locations

Figure 2: The process of diffusion (Introduction to diffusion models for machine learning)

the image’s high-level features. Diffusion is then run on this latent representation. When an image is
denoised, it is run through a decoder, which converts the denoised image encoding into an image in
the pixel space. Running diffusion in the latent space rather than the pixel space preserves accuracy
while increasing efficiency.

Cross-attention is a mechanism that allows for images to be denoised with an added condition of an
embedding. For example, in popular diffusion models such as Midjourney, the text prompt that a user
gives the diffusion model is converted into tokens, which are represented as a numerical embedding.
The embeddings are converted into key-value pairs. The image that needs to be denoised is converted
into queries. The queries and key-value pairs are matched and guide the removal of noise from the
image.

Attention maps can be printed during this process. They can also be displayed showing how each
token impacted attention.

Key points can be generated with the help of the cross-attention mechanism. In one particular
paper, a randomized embedding is used in cross-attention (Hedlin et al.). A loss function is used to
optimize the embedding that conditions for the attention maps to form single-mode Gaussians that
land on equivariant points regardless of image transformations. When the embedding is optimized,
the attention map formed during the diffusion contains single-mode Gaussians (one for each key
point). The maximum coordinate of these Gaussians are considered key points. Note in figure 5
how these key points are generated in an unsupervised manner and, although equivariant, do not
generate on a particular point specified by the user of the algorithm.

The images below are some samples of the unsupervised key point generation from this model. The
number of key points in the sample generations vary from 1 to 10. Due to key points having some
distance enforced between them, it seems that the model works better and more consistently when
generating ten key points at a time rather than less.

Figure 3: The process of latent diffusion. (Cong et al.)
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Figure 4: A diagram of the cross-attention mechanism (Kosar)

Figure 5: (top) Attention by token, (bottom) Attention by timestamp

Figure 6: The architecture from ”Unsupervised key points from Pretrained Diffusion Models”
(Hedlin et al.)

Figure 7: Example generations from the unsupervised key point generation model from ”Unsuper-
vised key points from Pretrained Diffusion Models” (Hedlin et al.)
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Figure 8: The mechanism behind textual inversion (Gal et al.)

Figure 9: An example of image generations using textual inversion (Gal et al.).

Another interesting paper that inspires this research is ”An Image is Worth One Word: Personalizing
Text-to-Image Generation using Textual Inversion” (Gal et al.). In this paper, a standard diffusion
model generates images of a particular theme, such as paintings. A new idea not trained into the
diffusion model, such as that of a cross-legged statue, is converted into an embedding. This em-
bedding is appended to other embeddings used by the diffusion model. The appending of this new
embedding representing this new idea allows the original diffusion model to generate an image of
its original theme with the new idea incorporated into it, i.e. an image of a painting of a cross-legged
statue. This would not have been possible without the appending of the new embedding unless the
diffusion model was trained again with many examples of this new idea, which would be inefficient.
This paper demonstrates how appending embeddings to other embeddings can augment the output
of a diffusion model without having to re-train the diffusion model.

A final important concept that inspires this research is that of in-context learning. In-context learning
is a notion in natural language processing of improving a model’s accuracy without retraining the
model’s weights. In NLP specifically, this occurs by adding context (such as input-output pairs) into
input prompts that are tokenized and given to the model. This research aims to implement in-context
learning — that is improve a model’s performance without re-training by providing more context —
in the realm of computer vision and diffusion.
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Figure 10: An example of how in-context learning works in natural language processing (Xie and
Min)

Figure 11: We intend to shift the key point to a specific desired area rather than a vaguely important
key point auto-generated by the unsupervised key point generation method (Hedlin et al.)

3 PROBLEM

This research aims to allow for the incorporation of expert knowledge, or the increase in flexibility
of usage, of diffusion-based unsupervised key point generation. Specifically, we aim to cause key
points to be generated in specific places in an image specified by a user. We aim to do this without
retraining diffusion model weights and without collecting a large dataset. We will specifically be
aiming for the key point to be on the left foot, head, and elbow. Solving this problem would be
useful for users of diffusion models who want to apply key point generation efficiently for a specific
use case where context might be important (i.e. sports pose estimation). To clarify, a key point
is the coordinate pair of maximum attention in an attention map. At the end of this paper, we will
demonstrate how we were able to have the point land on a desired key point 26.5% of the time when,
without using this method, it landed on the intended key point coordinate very rarely (near zero).

4 METHODS

The dataset I use is from the Max Planck Institute (3D poses in the wild dataset). I use a training
dataset of 5 images for some iterations and a training dataset of 20 images for other iterations. The
test dataset is 10 images.

The Three Layers of Computation

There are three layers of computation in my approach. There are two frozen layers, the diffusion
model itself, and the embedding generation from the unsupervised key point generation paper men-
tioned in the background (Hedlin et al.). This second layer uses a loss function that optimizes for the
creation of single-mode Gaussians in the attention maps (localization) and for key points to land in
the same place regardless of image transformations (equivariance), My contribution is adding a third
layer, an extra embedding appended to the embedding in the second layer that uses a loss function
that minimizes mean squared error between all the pixels in a ground truth attention map and the
predicted attention map for training images.

The following is a diagram of the final approach. I append an embedding to the original embedding
from the unsupervised key point generation method (Hedlin et al.).

Metrics of Success
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Figure 12: The three layers of my approach

Figure 13: The architecture of my method

Overall, I will be aiming to maximize the proportion of predicted key points that land within a
specific pixel range of my desired key point.

While working towards this ultimate metric, I use two metrics to guide my hyperparameter optimiza-
tion. Firstly, I calculate the mean squared error between the attention in the pixels of the ground truth
attention maps and attention in the pixels of the predicted attention maps. These ground truth atten-
tion maps are generated so that the pixel with the maximum attention is where the desired key point
is located.

The second metric is looking for semantic meaning in the error. For example, in figure 14, the left
photo shows a lack of consistency in the direction of the error, whereas the right photo’s key points
fixate on the head (this generation is intending to place the key point on the foot). This indicates
there may be a different hyperparameter to be optimized between these two types of errors. For
example, the left image would benefit from weighting equivariance more in the loss function while
the right would not.

Failed Approaches

1. MSE of Only Maximum

In this approach, the loss function for the third layer of my approach minimized the mean squared
error between the desired key point coordinate and the predicted key point coordinate. This did not
improve accuracy and was not used because it did not reflect the nature of attention maps, which are
integral to how diffusion functions. It thus did not provide a differentiable function along which the
loss could improve.

2. Using CLIP and YOLO

A second approach was to use YOLO to create a bounding box around predicted key points (Redmon
et al.). Then, the portion of the image inside the bounding box is processed by CLIP and converted
into an embedding (Ratford et al.). The MSE between the embedding of the predicted key point
and an embedding generated from the area of the image of the desired key point is used for the loss

Figure 14: Examples of semantically meaningful and semantically meaningless error
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Figure 15: A diagram of the failed approach using CLIP and YOLO

Figure 16: Shaded Areas for Results of Left Foot Optimization using 5 Training Images

function. This did not improve accuracy. It was not used because CLIP is trained on entire objects,
not parts of objects, and thus could not properly create embeddings for parts of the human body from
my dataset. Additionally, this method does not provide a differentiable, smooth loss map to traverse.
A hybrid version of the MSE of maximum point approach and this CLIP and YOLO approach was
also tested, but did not improve accuracy.

The final hyperparameters were the following. How these hyperparameters were optimized and what
they are is explained in the discussion section of this paper. Ground truth maps utilized a Gaussian
distribution with a standard deviation of 0.05 times each dimension of the training image. The
third layer incorporated equivariance and localization into the loss function in addition to MSE of
attention maps, with a relative weight of 1 localization, 1 equivariance, and 5 MSE. The relative size
of the appended embedding in the third layer that is appended onto the second layer embedding is
0.2. 1 augmentation step and 100 optimization steps were used. All hyperparameters were optimized
by comparing to results when optimizing for the left foot.

5 RESULTS

When training on only 5 training images and optimizing for the left foot, 26.25% of key points
landed within 300 pixels of the desired key point in a meaningful direction (or the yellow area in
figure 16) with a standard deviation of 18.06%. 17.50% of key points landed within 40 pixels of
the desired key point in any direction (or the orange area in figure 16) with a standard deviation of
15.86%.

When training on 20 training images and optimizing for the left foot, 21.00% of key points landed
within 300 pixels of the desired key point in a meaningful direction (or the yellow area in figure 16)
with a standard deviation of 27.89%. 14.00% of key points landed within 40 pixels of the desired
key point in any direction (or the orange area in figure 16) with a standard deviation of 15.72%.

When training on 20 training images and optimizing for the point to land on the head, 12.00% of
key points landed within 200 pixels of the desired key point in a meaningful direction (or the yellow
area in figure 17) with a standard deviation of 16.85%. 9.00% of key points landed within 40 pixels
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Figure 17: Shaded Areas for Results of Optimization for Head key point using 20 Training Images

Figure 18: Shaded Areas for Results of Optimization for Left Elbow key point using 20 Training
Images

of the desired key point in any direction (or the orange area in figure 17) with a standard deviation
of 15.94%.

When training on 20 training images and optimizing for the point to land on the left elbow, 0.00%
of key points landed within 40 pixels of the desired key point in any direction (or the orange area in
figure 18).

Qualitative findings include how, when optimizing for a left foot key point and the key point is not
landing where desired, often the point lands on easily identifiable objects with distinct colors and
shapes such as the head or basketball in the image.

Additionally, accuracy seemed to rely heavily on the embedding. For example, for any given run
using one embedding, it was more likely for 0/10 or 3/10 key points to land in the correct place, not
1/10 or 2/10. The correct hits come in clusters.

Figure 19: Key point landing on head consistently despite desired key point being left foot
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Figure 20: Gaussian vs Cauchy Distribution

Figure 21: An example ground truth attention map

6 DISCUSSION

Multiple hyperparameters were optimized.

1. Type of Ground Truth Attention Map

I considered both the Gaussian and Cauchy distribution to form the ground truth attention maps. I
considered Cauchy because it has thicker tails which would provide more learning signal to attention
at the tails, allowing the maximum point to move closer to the desired maximum. It also has a
steeper approach to the maximum within two standard deviations of the center, which allows for the
predicted point to be more concentrated in the center. I did not end up using the Cauchy distribution
because the localization aspect of the loss function in the second layer optimizes for Gaussian-
shaped distributions, and I wanted the elements of the loss function to be consistent. Using Cauchy
also did not improve accuracy.

2. Standard Deviation of Gaussian

The ideal standard deviation for the Gaussian in the ground truth attention maps was experimentally
determined to be 0.05 of the size of each dimension of the image.

3. Whether to Combine Layer 2 and Layer 3

Experimentally, it was more effective to add equivariance and localization calculations to the loss
function for the third layer that originally only calculated MSE of attention maps. This is likely
because the equivariance and localization calculations acted as regularizers. They reduced the search
space and thus minimized overfitting and avoided the key points landing on local minima.

4. Weights of Layer 3

Experimentally, the relative weighting of localization, equivariance, and attention map MSE in the
embedding appendage was optimized to be 1 localization, 1 equivariance, and 5 MSE.

5. Size of Appended Embedding

9
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Figure 22: Diagram of updated layers

Figure 23: Examples of key point generation with varying relative weights of third layer loss func-
tion

Experimentally, the size of the appended embedding (that is, the size of the third layer embedding
which is appended to the second layer embedding) was optimized at 0.2 times the size of the second
layer embedding.

6. Number of Augmentation Steps

Augmentation steps are the number of times that the attention is re-run with the same embedding
but with different transformations (rotations, scaling, translations, etc...) to improve robustness. The
coordinate locations of the key points are averaged across all augmentation steps. Although the
original unsupervised key point generation paper used 10 augmentation steps, 1 was found to be
experimentally optimal. At this point, the model identified the left foot around 20% and points
were either very close to the correct point or very far (only rarely moderately far). Thus, I believe 1
step was optimal because averaging the outcomes for ten photos would often cause the average for
each of the ten photos to never be on the left foot because the correct points would be averaged with
the incorrect points.

7. Number of Optimization Steps

Experimentally, the optimal amount of optimization steps was 100.

It seems that increasing the number of training images did not meaningfully improve accuracy. This
is likely due to how the increase from 5 to 20 images is not large in comparison to datasets used to
train the diffusion model.

The accuracy dropped when optimizing for the head. This is likely because hyperparameters might
be overfit for optimizing for the left foot since they were optimized while running experiments for
the left foot key point optimization. The accuracy for the identification of the left elbow was very
low. This signifies that this method works more effectively on key points that are visibly different
from the rest of the image, such as having a contrasting color.

There was also some interesting behavior likely due to randomness, although none was replicable.
Firstly, with one optimization step, there was an instance where the left foot was identified 100% of
the time.

Figure 24: Examples of key point generation with varying appended embedding sizes
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Figure 25: Examples of key point generation with varying numbers of optimization steps

Figure 26: Left foot optimization with 1 optimization step with 100% accuracy (not replicable)

Additionally, even at suboptimal hyperparameters (e.g. third layer embedding being the same size
as second layer embedding), the key point was capable of landing on the head consistently or the
basketball consistently. This result, as seen in the following photo, occurred when optimizing for
the key point to land on the left foot.

7 CONCLUSION

In conclusion, using a supervised method with 5 input images, in-context learning was able to in-
crease the ability of the key point generation to target the left foot from near zero to 26.25%. More
identifiable body parts as key points are better suited for this method. Increasing the size of the
training dataset from 5 to 20 does not increase accuracy. Applying the same method to locating the
head gave 12.00% accuracy, and doing so for the left elbow gave 0.00% accuracy.

Implications

This work signifies that it is possible to optimize key point generation for specific semantic locations
and use cases while maintaining the efficiency of unsupervised key point generation. This can be
useful in pose estimation. It also broadly shows how in-context learning can be implemented in
computer vision.

Next Steps

I plan to pursue several next steps.

Firstly, I plan to train the original embedding (that of the second layer) while aiming for ten key
points (which is a controllable parameter), which seems to make the range of key points produced
more stable, equivariant, and semantically salient. Then, I will proceed as normal and train the third
layer looking for one key point. As of this paper’s writing, I trained the second layer embedding
looking for one key point.

I also intend to train the original embedding on unlabelled images from the same dataset used for
the third layer embedding to take advantage of semi-supervised learning.

Thirdly, I plan to implement the object similarity metric as a more precise measure for accuracy and
perhaps incorporate it into the loss function.

I will also try to increase accuracy by tuning hyperparameters while testing results on various dif-
ferent desired key points rather than only one (e.g. head, left elbow, etc...). My hyperparameters as
of this paper’s writing were trained while only looking at results of left foot key point optimization.

I also intend to experiment with larger training datasets, more varied training datasets, and while
aiming to detect multiple specific key points at a time.

Figure 27: Left foot optimization whose key point lands on head many times
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Figure 28: Examples of Left Foot Predicted Key Points with 20 Training Images

Figure 29: Examples of Head Predicted Key Points with 20 Training Images

In the far future, I hope to explore ways to better represent semantic meaning by, for example,
comparing embeddings in some way that forms a differentiable loss function.
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Figure 30: Examples of Left Elbow Key Point with 20 Training Images
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