
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Princeton Independent Research Work

CONDITIONAL DIFFUSION FOR SPECIFIC CELLULAR
AUTOMATA SYNTHESIS
IN CONWAY’S GAME OF LIFE

Jin Schofield, Vikram Ramaswamy
Princeton University

ABSTRACT

Generative machine learning can often fail to properly model discrete patterns in
logic-based environments. In this work, I present a conditional diffusion frame-
work that makes use of DDPM, classifier-free guidance, and FiLM-based class
embeddings. The model is trained on both random and quota-balanced datasets
of Conway’s Game of Life to ensure representation of rare patterns. Conditional
sampling increased the occurrence of targeted life form patterns when compared to
unconditional sampling. Motif analysis and t-SNE visualization showcase the fre-
quency of varyingly complex cellular automata as well as the separability of nois-
ing embeddings for different forms of life. The findings of this project demonstrate
that conditional diffusion can distill and increase the occurrence of fine-grained
discrete structures in logic-based environments, furthering the field of applying
interpretable generative modeling to discrete data. Diffusion models are better at
learning simpler structures as opposed to complex structures, and are capable of
learning combinations of these structures.

1 INTRODUCTION

Diffusion models are a form of generative machine learning that is especially popular for two-
dimensional image generation. By training on a series of images in a dataset, they learn the ca-
pability to remove noise from pure Gaussian noise to create images that appear as if they could
have been sampled from the original dataset. Compared to other image generation techniques, such
as those using generative adversarial networks (GANs) and variational autoencoders (VAEs), dif-
fusion models demonstrate better quality and training stability (Goodfellow 2014; Kingma 2022).
However, hallucinations, or logical errors, are often generated in diffusion generations, such as bi-
ologically impossible depictions of humans. Diffusion models perform well on continuous image
generation tasks, but can perform more poorly when robustly creating images in discrete or logically
structured settings.

In particular, diffusion models struggle to identify discrete patterns in data and robustly apply them
during image generation (Austin 2023). Diffusion processes, which are ideal for training on datasets
of continuous domains, can fail to respect logical, combinatorial rules found in environments such as
Conway’s Game of Life. If applied naively, diffusion models are more likely to represent outcomes
of higher probability in the dataset, such as extinction of a pixel configuration. This leads to the
underrepresentation of more rare, delicate structures such as forms of life that persist throughout the
game. This is due to how, in Conway’s Game of Life, every pixel has the potential to impact other
pixels in a sort of butterfly-like effect. Thus, in order to correctly model these forms of life, the
diffusion model must be precise with its generations in a discrete setting, learning patterns to adhere
to the environment’s logical rules. A small mistake in the form of a single pixel has the potential to
change the label of an entire sample generation.

In essence, this paper seeks to utilize diffusion to create conditional embeddings that represent logi-
cal patterns. In NLP and computer vision, embeddings are numerical representations of tokens that
represent abstract ideas, such as the visual manifestation of a ”car”, or the syntactic and semantic
manifestations of ”car”. When these embeddings are created conditioned on specific subset of data,
they can be referred to as conditional embeddings. The paper trains conditional embeddings in dif-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Princeton Independent Research Work

fusion such that, in order to represent a notion such as a ”still-life” living configuration in Conway’s
Game of Life, they must partially emulate the logical pattern of a still-life as well. This attempt
to distill logical patterns in embeddings aims to reduce hallucinations caused by logical errors in
computer vision, as well as increase interpretability.

Specifically, this work aims to develop a conditional diffusion framework for discrete pattern syn-
thesis in cellular automata.

The contribution of this paper to the fields of interpretability and computer vision are the creation
of a pipeline that created embeddings that represent logic-based fine-grained patterns in a discrete
setting, and a diffusion model that can synthesize specific cellular automata in the Conway’s Game
of Life environment. In particular, the diffusion model will be able to generate still-life and 2-period
oscillator forms of life, as well as cellular automata that die off.

In using datasets of only 4000 samples, each of only a 32 by 32 resolution, this technique does not
require a large dataset and thus contributes to dataset efficiency as well.

2 BACKGROUND

2.1 CELLULAR AUTOMATA AND CONWAY’S GAME OF LIFE

Cellular automata are dynamical systems that operate in discrete environments, particularly a grid of
cells, where each cell can take a value from a finite set. Each cell updates according to local transition
rules and all cells update at the same time (Wolfram 1984). One set-up for cellular automata is
Conway’s Game of Life (GoL) (Gardner 1970). In GoL, there exists a two-dimensional grid where
each cell in the grid can either be dead or alive. For the purposes of this paper, white indicates
dead and black indicates alive. Each cell has eight neighbors. If a live cell has two or three live
neighbors, it survives. Otherwise, it dies. if a dead cell has exactly three live neighbors, it becomes
a live cell. There are many emergent behaviors that occur in GoL. For example, there are various
still-life patterns, such as blocks and beehives. These patterns include live cells which always have
exactly two or three live neighbors, and dead cells without exactly three live neighbors. Thus, no
cells change with each timestep. Period-k oscillators are patterns that repeat every k timesteps, such
as blinkers and toads. There are also configurations that move such as gliders and spaceships. In
this paper, I will focus on identifying conditional embeddings for still-life and period-2 oscillators.

2.2 GENERATIVE MACHINE LEARNING AND APPLICATIONS TO DISCRETE DATA

Generative machine learning is a form of machine learning that specializes in training models that
can generate data that resembles that of a training dataset. Existing techniques are accurate and
efficient when dealing with continuous data. One example is the generative adversarial network
(GAN), which makes use of competing ”generator” and ”discriminator” models to produce images
that resemble a dataset, although the technique suffers from training instability and mode collapse
(Goodfellow 2014; Arjovsky 2017). A second technique is the variational autoencoder (VAE) that
learns to encode and decode a latent representation of important features of a dataset, and then sam-
ple from it using randomization. This technique can suffer from being imprecise in its generations
(Kingma 2022). A technique that has been particularly accurate is the denoising diffusion prob-
abilistic model (DDPMs). This technique consists of adding Gaussian noise to data over several
time steps and then using a neural network to learn how to denoise an example of pure noise over
various timesteps to reverse the noising process and reveal an image similar to the dataset (Ho 2020;
Dhariwal 2021). Diffusion models are known for their stable training dynamics and ability to create
high fidelity images.

These models leverage decoders that are differentiable, meaning a small change in the output can
result from a small change in the input, as well as transformations done by these decoders that are
invertible (there is a bijective mapping between input and output). In discrete settings, small changes
in the input result in either no change to the output or very large changes to output. Thus, transfor-
mations are not bijective. Thus, the previously mentioned generative AI techniques can struggle to
learn discrete data. The Gumbel-Softmax reparameterization technique aims to approximate dis-
crete sampling by using continuous relaxations but suffers the pitfalls of poor sample quality and
bias (Jang 2017). There exist graph-based generative models that use ”message-passing” networks

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Princeton Independent Research Work

in order to create discrete graphs (You 2018; Liu 2023), although these graph structures create asso-
ciations between different tokenized embeddings rather than representing discrete logical rules.

2.3 DIFFUSION

As discussed earlier, diffusion models use a forward noising process q(xt|xt−1) =
N (xt;

√
1− βtxt−1, βtI) to convert samples of a dataset into noise. The technique then trains a

network ϵθ(xt, t) (Sohl, Dickstein 2015; Ho 2020) to denoise samples of pure noise into samples
reminiscent of the original dataset. A key component of the diffusion model is the noise schedule
{βt}Tt=1, or the plan for how much noise is added at each timestep. If the noise schedule is linear,
per-step noise is added by interpolating βt. A cosine noise schedule instead aims to gradually in-
crease cumulative noise ᾱt in a smooth manner, which can increase fidelity of the outputs (Nichol
2021). Diffusion models can be made conditional by injecting new information, trained exclusively
on certain subsets of the data, into the denoising, such that for certain conditions (i.e. a specific
pattern in Conway’s Game of Life), specific information faithful to that condition is added. The
denoiser takes the form of a U-Net. At each time step, the U-Net takes the current noisy grid, the
time step embedding, and any conditional embeddings (to be explained in the next paragraph), and
predicts the noise residual, which is then removed from the image.

2.4 CONDITIONAL DIFFUSION AND FILM LAYERS

Conditional generative modelling can use one of two techniques — classifier guidance and classifier-
free techniques. Classifier guidance trains a classifier pϕ(c|xt) on the conditions but this causes
inference costs to be doubled. Thus, my technique uses classifier-free guidance which randomly
adds condition embeddings during training with probability pdrop at each timestep. At these
timesteps, conditional and unconditional noise predictions are calculated during sampling using
ϵ̂ = (1 + w)ϵθ(xt, t, c) − wϵθ(xt, t, ∅) (Ho 2020). My paper uses feature-wise linear modulation
(FiLM) which integrates the condition embeddings by learning affine transformations on the inter-
mediate outputs of the layer, which enables precise control over the generations (Perez 2017; Liu
2022).

2.5 PREVIOUS WORK IN SYNTHESIS OF CELLULAR AUTOMATA

A significant past approach to automating the discovery of different configurations of cellular au-
tomata is the use of genetic algorithms. The use of genetic evolutionary algorithms have been able
to evolve initial conditions and even other rule sets that foster various objectives, such as length of
life or complexity (Mitchell 1996). Genetic algorithms simulate evolution by evolving a ”genetic
code” in an environment by using mutation, cross-over, and selection.

In the past, convolutional neural networks have been successful at learning a GoL’s dynamics from
observation, including on random cellular automata, where probability is used to randomize part of
the dynamics (Gilpin 2020). Additionally, neural networks have been used to train rules of cellular
automata that allow for a desired configuration to exist (Mordvintsev 2020). However, these works
tackle the ability to model cellular automata or create rule sets. The ability to condition for specific
types of cellular automata, and thus to distill down logical relationships of specific behaviors within
a rule set in a way that is generalizeable, has not been explored.

2.6 EMBEDDING VISUALIZATION AND INTERPRETABILITY

Embeddings and conditional embeddings were introduced earlier in my introduction.

Overall, cellular automata and continuous generative modelling works have largely evolved inde-
pendently. This work aims to connect the two lines of research and integrate generative modelling
for this purely discrete environment. The use of diffusion instead of convolutional neural networks
in my project allows for the distillation of conditional embeddings that represent and can thus gen-
erate specific types of life. A benefit of using diffusion is that it is inherently generative and thus
has the potential to utilize conditional embeddings to generate new unseen patterns as well. We
keep track of a novelty rate in this project to ensure generations are not clones or rotated or reflected
versions of clones of training data.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Princeton Independent Research Work

3 METHODS

3.1 KEY NOVEL IDEA: WHY IT IS NEW AND WHY IT IS EFFECTIVE

The key novel idea of this paper is the framing of Conway’s Game of Life cellular automata gener-
ation as a conditional diffusion problem. In particular, the novel idea is to leverage the precision of
conditional diffusion to capture the patterns and logical backbone of certain froms of GoL cellular
life in conditional embeddings. While previous attempts at understanding GoL have been either
non-generative (such as with physics-based dynamics papers as well as the work exploring convolu-
tional neural networks to understand the rules) or did not attempt to specify the differences between
various GoL life forms, this work uses conditional diffusion to not only generate new GoL life
forms but create conditional embeddings that can separate between them (Tapia McClung 2020;
Gilpin 2020). This seeks to understand latent representations of structures that survive in the GoL
environment rather than purely simulating pre-created patterns or analyzing existing dynamics.

This idea is effective because it leverages the fine-grained conditional control that well-trained con-
ditional diffusion models are able to exhibit. Conditional diffusion not only learns how to differen-
tiate between life forms based on classification, but also how to generate different types of noises at
different time steps, thus allowing for finer control at the pixel level in generations, which is crucial
for a discrete, logic-based environment such as GoL.

3.2 OVERARCHING EXPLANATION

The overarching goal is, in an environment operating under logical rules, to distill discrete cellular
automata patterns using conditional diffusion generation. Each GoL board is represented as a 32 by
32 grid of binary cells, with white coloring representing a dead cell and black coloring representing
an alive cell. The binary grid can thus be represented as x0 ∈ {0, 1}32×32. For example, each
training dataset sample takes that form.

The forward diffusion process adds Gaussian noise to x0 over 200 timesteps. This produces a noisier
version of x0 which we will call xt at timestep t. The U-Net, augmented with FiLM layers, learns
to predict ϵ, the noise, at every timestep. These components are used at each time step to denoise
during the reverse process.

There is two types of class conditioning originating in the training datasets by applying class labels to
each sample in the dataset, which are then passed into the diffusion model when learning. The model
reserves particular layers to learning only when a particular condition is present, thus constructing
information to be given to the FiLM layer during the denoising reverse process. One condition
explains whether after 200 logical timesteps of the Game of Life, the training sample configuration
has at least one living cell left (alive), or all cells are dead (dead). The second condition has four
options: dead, still-life, 2-period oscillator, and other form of life. This second condition simply
conditions more granularly for a specific type of life. Classifying live samples between still-life,
2-period oscillator, and other occurs by looking at the final frames of the 200 timesteps. If they do
not change, it is a still-life. If there is repetition of period 2, it is an oscillator of period 2. Otherwise,
it is labelled other.

The one other form of conditioning is timestep conditioning, which takes the form of a sinusoidal
positional encoding, meaning it is generated by computing a series of sine and cosine functions at
varying frequencies. In particular, the vector takes the form,

n(w1t), cos(w1t), sin(w2t), cos(w2t), . . . , sin(wKt), cos(wKt)

where each wk is a different frequency. This technique is used to create a more smooth difference
between vectors at each time step, which allows for more stable training.

The timestep and class embeddings are summed together to form vector et,c. During inference, the
classifier-guidance thus interpolates between the unconditional and conditional predictions by ad-
justing wk. This allows for a balance between diversity of sampling and adherence to the condition.

3.3 DATASETS

We create two different datasets.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Princeton Independent Research Work

Figure 1: Components of Diffusion Model

The first dataset is the random dataset, meaning that 4000 GoL samples are generated randomly.
They are generated by each cell having an independent probability of being alive of 0.05 in a 32 by
32 grid. Each board is then evolved for 200 steps using GoL rules. The outcome is then classified
based on the two conditions of whether it is alive or dead, and its specific type of life. A script
calculating neighbor counts for each cell is used to simulate the GoL rules. The purpose of this
dataset being random is to collect the naturally occurring proportions of dead samples, alive samples,
and various types of life. This dataset is created by generate random dataset.py

The second dataset generates and classified data samples in the same way, except that it has quotas:
1000 dead samples (meaning samples that die at the 200th timestep), 1000 still-life alive samples,
1000 2-period oscillator alive samples, and 1000 other alive samples. This dataset generates until
all 4 quotas are full and does not add more than 1000 of each type of sample.

4 IMPLEMENTATION

4.1 DIFFUSION MODEL ARCHITECTURE

The model architecture consists of a standard U-Net backbone with residual FiLM blocks for class
embeddings. The components of the network can be seen in Figure 1 and are elaborated upon in the
following table:

4.2 COMPONENTS OF DIFFUSION MODEL: DESCRIPTIONS

Table 1: Network Component Descriptions
Component Description

Time Embedding A sinusoidal position encoder passed through an multi-layer perceptron. It has
256 dimensions, is expanded to 1024 in the perceptron, and then outputs as 256
dimensions. It has SiLU activation.

Class Embedding It is a table of learnable embeddings for all forms of life, alive, and death classes.
Each have 256 dimensions.

Downsampling
Path

There are three residual blocks with channel depths 64, 128, and 256. Each
consists of GroupNorm, FiLM (parameterized by the et,c vector), SiLU, and a
3 by 3 convolution. After this convolution, a time embedding is added. There
is a 4 by 4 stride-2 convolution to halve resolution.

Bottleneck A residual FiLM block at 256 channels.

Upsampling Path This consists of three stages of convolutions and their transposes used to up-
sample. It utilized skip-connection concatenation from the downsampling path.
A skip is the feature tensor saved from the downsampling path during encoding
and then given to the decoding upsampling path. There are three FiLM residual
blocks at channels 256, 128, and 64.

Output Head This consists of a FiLM residual block at 64 channels. It has a 1 by 1 convolu-
tion that creates a single-channel noise prediction ϵ̂(xt, t, c)

The weights are initialized using Kaiming normalization and I apply spectral regularization to pro-
mote stable training.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Princeton Independent Research Work

4.3 TRAINING PROCEDURE

Training occurs over 250 epochs. One model trains on the random dataset, and the other trains on
the dataset of quotas, producing two different models. We will call them the random model and then
quota model.

We use the AdamW optimizer with a learning rate 10−4. The batch size is 32.

For every batch, the following steps repeat:

1. Sample t ∼ Uniform(1, T).
2. Calculate xt =

√
ᾱtx0 +

√
1− ᾱtϵ using ϵ ∼ N (0, I).

3. Send xt, t, and condition c through the U-Net and predict ϵ̂.
4. Calculate mean squared-error loss, LMSE = ∥ϵ− ϵ̂∥2.
5. Backpropagate.
6. Clip gradient at norm 1.0.
7. Update optimizer.

4.4 SAMPLING AND INFERENCE

Depending on the experiment, either 300 or 500 boards are sampled at a time. This means 500 32
by 32 boards are initialized using a threshold probability (for example, 0.5) that each cell is alive at
the first timestep. They are each evaluated after 200 timesteps using the rules of GoL before being
classified as alive or dead and by type of life. We sample random noise with xT ∼ N (0, I) and
iterate the reverse process with classifier-free guidance parameter w = 1.0.

4.5 REPRODUCIBILITY AND ENVIRONMENT SETUP

4.5.1 CODE AND DATA REPOSITORY

All code, data, and other information exist on GitHub:

https://github.com/jinschofield/Gen-GOL

The root of the repository possesses:

• README.md: overview, installation, usage.
• requirements.txt: pinned Python dependencies.
• train.py, phase 2 conditional diffusion/, finished models/, data/, scripts/.

I designed the codebase to compartmentalize responsibilities and thus allow for easy maintenance.

Upon opening the root of the repository:

• phase 2 conditional diffusion/: This generates datasets.
• models/: This possesses definitions of the architecture in unet.py. Logic for diffusion is in

diffusion.py.
• scripts/: This possesses the code for evaluation as well as the generation of information

used in this paper’s figures.
• train.py: This file performs training and possesses functions that help with sampling.
• requirements.txt: This contains dependency specifications.
• notebooks/: This contains the notebook used to interface with the rest of the code base for

data generation, training, evaluation, and visualization.
• plot fig8 embedding similarity.py: This plots the cosine similarity matrix.
• plot fig2.py: This is used for figures 2 and 4.
• plot living normalized.py: This is used for figures 3 and 5.

6

https://github.com/jinschofield/Gen-GOL

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Princeton Independent Research Work

• plot same category multi.py: This is used to create the conditional versus unconditional
comparison figures.

• plot sample visuals.py: This is used to print visual examples of each type of life.

• plot tsne film embeds.py: This is used for t-SNE visualizations.

4.5.2 ENVIRONMENT SETUP

Running the cells in the notebook will set up relevant dependencies and clone the repository. A
GitHub personal access token and GitHub username will have to be entered into the notebook.

4.6 DATASET GENERATION

The two files responsible for dataset generation are generate random dataset.py and
generate quota dataset.py. They use argparse in Python to accept parameters such as
output directories, sample counts, threshold (or probability for each individual cell to be alive or
dead during initialization), and quotas.

Each script does the following:

1. Initializes random seeds for NumPy and PyTorch.

2. Constructs the output directory if it is absent.

3. Samples 32 by 32 binary arrays with numpy.random.binomial.

4. Imports utils.gol simulator in order to simulate a time step in the game. For example,
computing neighbor counts and making the respective change to the cell’s live status.

5. Classifies outcomes using the classify function in label training data 32x32.py.

6. Calls np.save() to save each board.

7. Writes rows to a CSV using csv.writer

4.7 LABELING MODULE

The file label training data 32x32.py simulates GoL for 200 time steps and then classi-
fies the outcome:

• Simulation using utils/gol simulator.simulate(): This pads a 32× 32 board.
For each timestep, neighbor sums are calculated using np.roll assuming a toroidal structure
(the ends wrap):

• Classification using classify grid(arr, timesteps): Thus runs simulate(), then

1. If the final frame has all dead cells, it returns ”died out”.
2. Otherwise, it searches backward in history for a match p steps back:

– p = 1: ”still life”
– p = 2: ”oscillator period 2”
– none: ”others”

• CSV output: This uses Python’s built-in csv.writer to write to a CSV.

While I attempted to also classify for larger periods, gliders, and spaceships, I decided to only
classify period-2 oscillators and still-life for a few reasons. Firstly, I did not classify space ships
because upon manual scanning, my generated datasets seemed to almost never create them. Gliders
were more common but I could not find a computationally efficient way to accurately find them all
without false negatives or false positives. Finally, checking for oscillators of over period 2 was not
common because they did not naturally occur often.

The choice of making the edges toroidal was made in order to avoid having to make special rules
for edges and corners. There is no definite set of rules for Conway’s Game of Life for cells without
eight neighbors, thus I used the convention of making the grid toroidal. This meant that edges and
corners would wrap to the opposite side of the grid.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Princeton Independent Research Work

4.8 MODEL CODE

In models/unet.py, the UNet class does the following:

• Creates the SinusoidalPosEmb module, which calculates time embeddings via sine/cosine
functions.

• It builds a multi-layer perceptron to project the embedding: SinusoidalPosEmb → Linear
→ SiLU → Linear

• It instantiates nn.Embedding(num classes, time emb dim) for class labels, which is
summed with the time embedding during conditioning.

• It defines the ResidualBlock class, which:
– Applies GroupNorm to the input x.
– Calculates FiLM parameters γ1, β1 using a linear layer on the time embedding t, then

applies: h← h · (1 + γ1) + β1.
– Activates with SiLU: h← SiLU(h).
– Applies a 3× 3 Conv2d: h← Conv2d(h).
– Adds the time-MLP skip connection: h← h+ MLP(t).
– Applies GroupNorm to h.
– Calculates the FiLM parameters γ2, β2 from t and applies: h← h · (1 + γ2) + β2.
– Activates with SiLU again.
– Applies a 3× 3 Conv2d.
– Adds the residual connection: output x+ h.

• It defines UNet. init , which builds the following:
– self.downs: This is meant for down-sampling and is a structure of alternating Residu-

alBlock → Conv2d(stride=2) that halves the spatial dimensions
– self.bottleneck: This consists of one ResidualBlock at the lowest resolution.
– self.ups: This is meant for upsampling and is a structure consisting of ConvTrans-

pose2d(stride=2) → ResidualBlock with skip-connection concatenation.
• The forward(x, t, c) method:

1. Calculates t emb = time MLP(SinusoidalPosEmb(t)).
2. If c is provided, adds class emb(c) for use of the class embedding.
3. Runs the down-sampling path and stores skip maps.
4. Applies the bottleneck.
5. Runs the up-sampling path, concatenating each skip.
6. Applies a final ResidualBlock and a 1× 1 Conv2d to output the noise prediction.

The use of SinusoidalPosEmb allows for more stable training due to the embeddings being smoothly
changed across timesteps, rather than having large abrupt changes.

4.9 DIFFUSION ENGINE

In models/diffusion.py, the Diffusion class is defined. The class contains the forward and
reverse processes:

• Initialization (init) This precalculates {βt}, {αt}, and {ᾱt} for either a linear or cosine
noise schedule.

• cosine beta schedule(timesteps, device, s=0.008) This implements the Nichol Dhariwal
cosine schedule for ᾱt and returns the per-step βt.

• q sample(x start, t, noise) This calculates the forward diffusion: xt =
√
ᾱtx0 +

√
1− ᾱtϵ,

ϵ ∼ N (0, I).
• p losses(model, x start, t, c=None) This samples noise and computes MSE on the predicted

noise. There is code for implementations of MAE, SSIM, and BCE loss, but the weights
for these are defaulted to zero.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Princeton Independent Research Work

• p sample(model, x, t, c=None) This performs one reverse step using classifier-free guid-
ance.

• ddim sample(model, shape, eta=0.0, c=None) This is a deterministic DDIM sampler (η =
0), similar to p sample but not incorporating stochastic noise.

• sample(model, shape, c=None) This causes the full reverse chain to run from t = T down
to 1 by calling p sample at each step.

4.10 NOTEBOOK

The notebook organizes set-up such as cloning of the GitHub repository and downloading of depen-
dencies. It proceeds to then generate the relevant datasets, train the two models using these datasets,
and generate the data shown in the evaluation section.

4.11 HYPERPARAMETER ABLATION

Although a fully controlled grid search was not possible due to compute constraints, ablation studies
were performed to assess the best hyperparameters.

Techniques that were tested but ultimately not used included using a multiplier on the loss for ”live”
cells to reinforce live cell occurrence, SSIM (Structural Similarity Index) loss, EMA decay (Expo-
nential moving average), BCE (binary cross-entropy) weight, loss-ramping with SSIM and BCE,
classifier-free guidance dropout, a pixel-wise L1 mean absolute error loss term, and L2 weight de-
cay.

Hyperparameters that were used are the following:

Table 2: Hyperparameter Settings
Hyperparameter Tuned Value
Noise Schedule Cosine
Epoch Number 250
Gradient Clipping The cap was at 1.0.
The use of FiLM layers. N/A
Learning Rate Scheduler Cosine
Classifier-free Guidance Drop-out. 0.1

The new, unintroduced concepts above are the learning rate scheduler and classifier-free guidance
dropout. The learning rate scheduler being cosine means that the learning rate follows a half-cosine
decay over the epochs and ends at nearly zero. This stabilizes convergence. Classifier-free guidance
dropout at 0.1 means that during training, the conditioning signal is dropped 10 percent of the time,
causing the model to learn conditional and unconditional sampling modes. This trains the value
ϵuncond in ϵguided = ϵuncond + w ∗ (ϵcond − ϵuncond), which allows the guidance scale value w to
be useful during inference.

4.12 PREVIOUS APPROACHES

Prior to attempting to use this standard conditional DDPM approach, I aimed to understand Con-
way’s Game of Life using Diffusion-of-Thoughts, a framework that can apply diffusion to strings
of text, or in this case, notation representing a grid of cells. The aim of this task was still to create
abstract representations that could represent logical relationships. The particular task was to predict
the grid at the next time step given a grid at a previous time step. Ultimately, my test accuracies were
very low due to the inability for the Diffusion-of-Thoughts model to perfectly understand the logical
rule as I trained it. I am unsure whether this was because the model is incapable of distilling down
the logical rules from unsupervised datasets of text descriptions of rules and sample evolutions as
well as supervised datasets, or whether it was an error of my not giving enough information to the
model. I decided to find a different way to try to distill down logical relationships in embeddings in
a manner that would be able to track incremental, imperfect progress. Thus, I stopped using a model

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Princeton Independent Research Work

Figure 2: Percentage of Each Type of Generations Between Random Training Dataset and Uncon-
ditioned Generations from Diffusion Model Trained on Random Dataset

that also possessed text embeddings and only focused on diffusion on binary data and evaluating on
a metric that was more interpretable, outcomes of generativity.

5 EVALUATION

5.1 METRICS

There does not exist a standardized benchmark against which I can compare the success of my
conditional embeddings at conditioning for specific traits in GoL cellular automata. The evaluation
section will be separated into two parts: quantitative and qualitative. Firstly, I will demonstrate
the efficacy of trained conditional embeddings quantitatively by showing how they increase the
occurrence of their class. In the second qualitative part, I will explore different manifestations of
still-life, period-2 oscillator life forms, and other forms of life. I will also present a t-SNE of the
conditioned outputs of different GoL outcomes.

5.2 QUANTITATIVE EVALUATION

We present five sets of figures.

Firstly, we trained a conditional diffusion model on the random dataset constructed with no quotas.
The categories, which are also the various conditions, are alive, dead, still-life, period-2 oscillator,
and other form of life after 200 timesteps. Samples may possess more than one class label, such as
being both alive and a still-life. We compare each class’ natural occurrence in the random dataset to
their occurrence when sampling from the diffusion model trained on this dataset with unconditioned
generations. This seeks to see the ability of the unconditioned sampling to replicate various forms
of life.

Using an individual probability of each cell being alive of 0.5 (we refer to this as the threshold), and
a sample generation of size 500, Figure 2 and Figure 3 are generated. While the diffusion model
produced more dead and less alive configurations in Figure 2, this is subject to the threshold, which
was set at 0.5, and thus no real conclusions can be made between the difference between alive and
dead in the training dataset and the generations from the model. When we normalize percentages
for only the types of life for alive configurations in Figure 3, we can see that generations from the
mode increase the proportion of life that are still life, decrease the proportion of period-2 oscillators,
and marginally decrease the proportion of the other category. This seems to point towards more
complex structures, such as period 2 oscillators, being more difficult for the model to form without
conditioning.

In the quota dataset, there are set quotas for proportions of dead, alive, and each category of life.
In the quota dataset, as seen in Figure 4, dead samples are once again easier to generate than alive
samples from the unconditioned model, although this is likely an effect of the threshold being 0.5.

Secondly, we trained a conditional diffusion model on the quota dataset. We compare each class’
occurrence in the quota dataset to their occurrence when sampling from the diffusion model trained
on this dataset with unconditioned generations. This seeks to see the ability of the unconditioned

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Princeton Independent Research Work

Figure 3: Percentage of Each Type of Living Generations Between Random Training Dataset and
Unconditioned Generations from Diffusion Model Trained on Random Dataset

Figure 4: Percentage of Each Type of Generations Between Quota Training Dataset and Uncondi-
tioned Generations from Diffusion Model Trained on Quota Dataset

sampling to replicate various forms of life given that there are sufficient examples of rare forms of
life in the training dataset. The results can be seen in Figure 4 and Figure 5.

The living-only chart, Figure 5, shows that unconditioned generations seem to favor still life and
period-2 oscillators far more heavily than other forms of life, which are by definition more complex,
since still life and period-2 oscillators are the simplest. There is a much larger jump in still life
production than period-2 production, further supporting that simpler structures are modelled more
easily.

Figure 5: Percentage of Each Type of Living Generations Between Quota Training Dataset and
Unconditioned Generations from Diffusion Model Trained on Quota Dataset

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Princeton Independent Research Work

Figure 6: The Occurrence of Each Class Between Unconditioned and Targeted Conditioned Gener-
ations When Trained on the Random Dataset

Thirdly, we compare each class’ occurrence during unconditioned sampling with their occurrence
with each condition applied. This seeks to find the efficacy of each conditional embedding at select-
ing for cellular automata of that kind given the random dataset. We present the novelty of generated
samples. Particularly, we ensure that no generated configurations are direct clones of initial frames
in the training data, invariant to reflections and rotations. We do not check for invariance to trans-
lation due to the compute associated with translation checks for all 300 samples across all 4000
training steps, as well as that we still consider translations to be valid since we intend for the diffu-
sion model to pick up on patterns and replicate them. We check for novelty to ensure that the model
is not memorizing entire 32 by 32 grids. The results can be seen in Figure 6 and Figure 7.

Figure 6 demonstrates that, when trained on a random dataset, and when training conditional em-
bedding on each of the five categories in the figure, the application of the conditional embedding
increases the proportion of generations containing that type of life. The threshold was 0.3. For
example, the unconditioned bars (excluding alive, which will repeat with the individual life cate-
gories) all add to 100 percent because they represent the same run, and the proportions of behavior
from that one run. Each of the five conditioned bars represent a different run, thus they do not add
to 100 percent. For example, the alive conditioned bar represents the generation from the model
when only the alive condition is applied. This results in a larger proportion of the generations being
alive, as seen when compared to the no condition run. The highest increases in proportion from
unconditioned to conditioned are dead and alive, likely because they represent broad patterns. Other
improves slightly, still-life marginally improves, and period-2 oscillator decreases. This decrease
in the case of period-2 oscillators can likely be attributed to how the random dataset does not have
quotas for specific types of life and thus the model trained on the random dataset did not get enough
representative samples to train an embedding that could replicate the type of behavior. The novelty
rate of all 5 runs was 100 percent, meaning no frame was a direct rotation or reflection of an image
in the training set.

Fourthly, we trained a conditional diffusion model on the quota dataset to generate Figure 7. We
compare each class’ occurrence during unconditioned sampling with their occurrence with each
condition applied. This seeks to find the efficacy of each conditional embedding at selecting for
cellular automata of that kind given the quota dataset. We present the novelty of generated samples.

Figure 7 is the same as Figure 6 except the model was trained on the quota dataset, thus providing the
model with a large enough dataset for each type of life, regardless of rareness. Both alive and dead
conditions increase proportion. Between still life and period-2 oscillators, the increase in proportion
is much larger for still life. This supports the idea that more complicated patterns are more difficult
for the diffusion model to learn. The other section decreased, likely becuase the category is a catch-
all for other forms of life and does not have a consistent meaning.

Finally, we create a 5 by 5 cosine similarity matrix comparing the similarities between the five
conditional class embeddings for the following classes: alive, dead, period-2 oscillator, still life, and
other life. This can be seen in Figure 8.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Princeton Independent Research Work

Figure 7: The Occurrence of Each Class Between Unconditioned and Targeted Conditioned Gener-
ations When Trained on the Quota Dataset

Figure 8: Cosine Similarity Between Class Embeddings

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Princeton Independent Research Work

Figure 9: Samples of Still-Life Generated From Model Trained on Quota Dataset

5.3 QUALITATIVE EVALUATION

In the following section, yellow cells indicate alive cells and grey cells indicate dead cells.

Interestingly, the alive and death conditions are the most similar, followed by the relationship be-
tween still-life and period-2 oscillator, the relationship between death and period-2 oscillator, and
the relationship between alive and still-life. The least similar are other life and period-2 oscillators.
It seems that similarity seems to reflect the reliance on structure rather than living or dying. For ex-
ample, death and period-2 oscillation might be very different because period-2 oscillation requires
on the existence of structure where death does not. This is not entirely consistent throughout the
matrix, so it is unclear whether the cosine similarity of embeddings given there are only five can
yield meaningful results.

We provide four figures. Firstly, we show common forms of still-life found in the generations from
the model trained on the quota dataset. Samples were generated until 100 still-lifes were collected.
In the chart below, the counts for individual structures will be the count including if more than one
structure occurred in a single generation (i.e. if there are two of type A in a single structure, the count
is incremented by 2). I also add counts of combinations of structures. This chart reinforces the idea
that simpler patterns are more easily generated by the model, although there is room for diversity.
This is demonstrated by the dominance of Pattern A but the interesting presence of pattern E. The
frequency of combinations of structures suggests that the diffusion model is learning to create these
structures independently.

Secondly, we show common forms of period-2 oscillators found in the generations from the model
trained on the quota dataset. Samples were generated until 100 two-period oscillators were collected.

This chart once again reinforces that simpler patterns are easier for the diffusion model to learn due
to dominance of pattern F. Pattern G was also very interesting to observe as it is just a combination
of 4 F’s. This suggests that the diffusion model also learns combinations of structures. It is unclear
whether this means that the diffusion model understands modularity or if it is memorizing these
large-scale combinations as well.

Thirdly, we present t-SNE visualizations of the embeddings that denoise the intermediate outputs at
each time step. At each time step, a time embedding (pre-noising) and time embedding and class
embedding combination (post-noising) are plotted. t-SNE visualizations of intermediate outputs
were created but there were no discernible clusters or differences between inclusion of a class, thus
the figure was not included in this report.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Princeton Independent Research Work

Figure 10: Samples of Period 2 Oscillators Generated from Model Trained on Quota Dataset

Figure 11: t-SNE: Basic Grouping (Death vs. Alive) for Pre-Noise (Time Embedding Only) and
Post-Noise (Class and Time Embedding)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Princeton Independent Research Work

Figure 12: t-SNE: All 5 Class Embeddings for Pre-Noise (Time Embedding Only) and Post-Noise
(Class and Time Embedding)

Figure 11 is a visualization of the pre-noise and post-noise embeddings for the dead and alive con-
ditions. Each point represents an occurrence of the embedding at a timestep.

There is a clear structure separating plotted points from one another if they do not represent the same
combination of embeddings except in the case of the alive time only embedding, the alive time and
class embedding, and the death time only embedding. It is interesting to see how the death time and
class embedding exists at the edge of the structure. This is very different from the death time only
embedding which exists exclusively intermingled with the alive time only embedding and the alive
time and class embedding. The clustering of the alive time and class embedding in two different
areas is also interesting to observe. The formation of curved lines is especially interesting.

I wonder whether the mixing of the embeddings in the center would be separated if one dimension is
changed. For example, if we imagine this 2-D visualization as a projection of a 3-D structure, if we
were to observe it from its top, we might see the red and orange clusters mixed. Thus, the separation
of clusters is not immediately interpretable. Figure 12 is similarly structured to the last except all
embeddings exist in one cluster. The still life time and class embedding and the oscillator time
embedding exist at the bottom. The time and class embedding, the alive time and class embedding,
and the death time and class embedding are distinct and all at the top. Every other embedding is
mixed in the center. The same question of rotation as in the previous figure remains.

I cannot discern a pattern in the structure of the visualization that might link back to the meaning of
the embedding placements in either of the figures above.

6 SUMMARY

Through my evaluation, I demonstrate that conditional diffusion in the form of a denoising diffusion
probabilistic model using classifier-free guidance and FiLM-based class embeddings can effectively
learn and increase the occurrence discrete cellular automata patterns in the Conway’s Game of Life
environment. In particular, it is capable of distilling embeddings that yield conditional sampling that
increases the prevalence of targeted conditioned forms of life and behavior in the cellular automata.
It can be observed that patterns of simpler structure are easier to generate using diffusion. Addition-
ally, diffusion can easily learn combinations of smaller structures. Novelty metrics confirm diversity
of the generations as not being clones of the training set 32 by 32 grids. Visualizations of motifs and
t-SNE visualizations of the embeddings demonstrate the various types of patterns that the diffusion
model can emulate as well as the distinct difference between embeddings of different conditions.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Princeton Independent Research Work

This establishes conditional diffusion as a technique for generative modelling of logical rule-based
discrete environments.

One limitation is the size of the training sample, which was 4000 samples for either dataset. This
was limited to 4000 to ease compute use due to limited resources and time, but could hae potentially
led to underrepresentation of rare forms of life. This would result in biased outcomes.

A second limitation is that only two forms of life were properly categorized, still-life and period-2
oscillators. Oscillators of larger than period-3 as well as gliders and spaceships were not categorized
due to the increased time complexity of such operations. This limitation means that the outcomes of
this technique on many lfie forms in Conway’s Game of Life are unknown.

A third limitation is the use of the 32 by 32 grid as the only grid upon which these embeddings act.
The effects of this are twofold. Firstly, this limits the size of configurations that could be explored
in this project. Second, the generalizability of conditional embeddings to smaller or larger grids is
unknown.

Immediate next steps would be to scale to larger grid resolutions to explore the generalizability of the
conditional embeddings. Additionally, conducting the same analysis on oscillators of larger periods
as well as gliders and spaceships would be interesting. Applying this framework to various cellular
automata rule sets such as Brian’s Brain in order to evaluate the generalization of the technique as a
whole on increasingly complex environments would also be very insightful.

REFERENCES

Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. arXiv:1701.07875.
Austin, J., Johnson, D. D., Ho, J., Tarlow, D., & van den Berg, R. (2023). Structured denoising diffusion
models in discrete state-spaces. arXiv:2107.03006.
Dhariwal, P., & Nichol, A. (2021). Diffusion models beat GANs on image synthesis. arXiv:2105.05233.
Gardner, M. (1970). The fantastic combinations of John Conway’s new solitaire game ’life’. Scientific
American, 223(4), 120-123.
Gilpin, W. (2020). Cellular automata as convolutional neural networks. arXiv:1809.02942.
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio,
Y. (2014). Generative adversarial networks. arXiv:1406.2661.
Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. arXiv:2006.11239.
Jang, E., Gu, S., & Poole, B. (2017). Categorical reparameterization with Gumbel-Softmax.
arXiv:1611.01144.
Kingma, D. P., & Welling, M. (2022). Auto-encoding variational Bayes. arXiv:1312.6114.
Liu, W., Ren, G., Yu, R., Guo, S., Zhu, J., & Zhang, L. (2022). Image-adaptive YOLO for object detection in
adverse weather conditions. arXiv:2112.08088.
Liu, X., Zhang, L., & Guan, H. (2023). Uplifting message passing neural network with graph original
information. arXiv:2210.05382.
Mitchell, M. (1996). Evolving cellular automata with genetic algorithms. In Proceedings of the First Inter-
national Conference on Genetic Algorithms (pp. 125-131).
Mordvintsev, A., Randazzo, E., Niklasson, E., & Levin, M. (2020). Growing neural cellular automata. Distill.
https://distill.pub/2020/growing-ca
Nichol, A., & Dhariwal, P. (2021). Improved denoising diffusion probabilistic models. arXiv:2102.09672.
Perez, E., Strub, F., de Vries, H., Dumoulin, V., & Courville, A. (2017). FiLM: Visual reasoning with a
general conditioning layer. arXiv:1709.07871.
Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., & Ganguli, S. (2015). Deep unsupervised learning
using nonequilibrium thermodynamics. arXiv:1503.03585.
Tapia-McClung, R., & Hernandez-Montoya, V. (2020). A diffusion approach to the dynamics of Conway’s
Game of Life: Emergence of multiple power law fluctuation regimes. Chaos, Solitons & Fractals, 140,
110213.
Wolfram, S. (1984). Cellular automata as models of complexity. Nature, 311(5985), 419-424.
You, J., Ying, R., Ren, X., Hamilton, W., & Leskovec, J. (2018). GraphRNN: Generating realistic graphs
with deep auto-regressive models. In Proceedings of the 35th International Conference on Machine Learning
(pp. 5708-5717).

17

	Introduction
	Background
	Cellular Automata and Conway's Game of Life
	Generative Machine Learning and Applications to Discrete Data
	Diffusion
	Conditional Diffusion and FiLM Layers
	Previous Work in Synthesis of Cellular Automata
	Embedding Visualization and Interpretability

	Methods
	Key Novel Idea: Why It Is New and Why It is Effective
	Overarching Explanation
	Datasets

	Implementation
	Diffusion Model Architecture
	Components of Diffusion Model: Descriptions
	Training Procedure
	Sampling and Inference
	Reproducibility and Environment Setup
	Code and Data Repository
	Environment Setup

	Dataset Generation
	Labeling Module
	Model Code
	Diffusion Engine
	Notebook
	Hyperparameter Ablation
	Previous Approaches

	Evaluation
	Metrics
	Quantitative Evaluation
	Qualitative Evaluation

	Summary

